Materials Science, Multidisciplinary

Article Chemistry, Physical

Unveiling the Synergy of O-Vacancy and Heterostructure over MoO3-x/MXene for N2 Electroreduction to NH3

Ke Chu, Yaojing Luo, Peng Shen, Xingchuan Li, Qingqing Li, Yali Guo

Summary: In this study, vacancy and heterostructure engineering were integrated to develop O-vacancy-rich MoO3-x anchored on Ti3C2Tx-MXene as a highly active and selective NRR electrocatalyst. Experimental results demonstrated exceptional NRR activity, increased NH3 yield, and Faradaic efficiency for the catalyst.

ADVANCED ENERGY MATERIALS (2022)

Article Chemistry, Physical

Origin of high electrochemical stability of multi-metal chloride solid electrolytes for high energy all-solid-state lithium-ion batteries

Guofeng Xu, Liang Luo, Jianwen Liang, Shangqian Zhao, Rong Yang, Changhong Wang, Tianwei Yu, Limin Wang, Wei Xiao, Jiantao Wang, Jinqiu Yu, Xueliang Sun

Summary: This study introduces a multi-metal chloride solid-state electrolyte with excellent electrochemical stability and high ionic conductivity, which, combined with high-performance cathodes and high-voltage electrolytes, demonstrates superior electrochemical performance for all-solid-state batteries.

NANO ENERGY (2022)

Article Chemistry, Multidisciplinary

Antifreezing Hydrogel Electrolyte with Ternary Hydrogen Bonding for High-Performance Zinc-Ion Batteries

Siwen Huang, Lei Hou, Tianyu Li, Yucong Jiao, Peiyi Wu

Summary: This study demonstrates a new approach for designing high-performance antifreezing flexible batteries by utilizing the Hofmeister effect and low-concentration salts to regulate the chemical properties of hydrogel electrolytes. The optimized hydrogel electrolyte exhibits excellent flexibility and high ionic conductivity, enabling the zinc-ion battery to achieve good cycling performances even at low temperatures.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Optimizing Atomic Hydrogen Desorption of Sulfur-Rich NiS1+x Cocatalyst for Boosting Photocatalytic H2 Evolution

Duoduo Gao, Jiachao Xu, Linxi Wang, Bicheng Zhu, Huogen Yu, Jiaguo Yu

Summary: An efficient coupling strategy of active-site-enriched regulation and electronic structure modification is developed by rational design of core-shell Au@NiS1+x nanostructured cocatalyst to address the limited H-2-generation performance of transition-metal chalcogenides. The resulting TiO2/Au@NiS1+x(1.7:1.3) exhibits a boosted H-2-generation rate with improved apparent quantum efficiency, indicating potential for enhancing photocatalytic hydrogen generation.

ADVANCED MATERIALS (2022)

Review Materials Science, Multidisciplinary

From classical thermodynamics to phase-field method

Long-Qing Chen, Yuhong Zhao

Summary: The article focuses on the phase-field method as a density-based computational method for modeling and predicting temporal microstructure and property evolution during materials processes. It discusses the connections between phase-field equations and classical thermodynamics, as well as the relationships of continuum phase-field equations at different levels. Additionally, it examines the contributions of long-range interactions to domain structure evolution during phase transformations.

PROGRESS IN MATERIALS SCIENCE (2022)

Article Computer Science, Information Systems

Robust Reversible Audio Watermarking Scheme for Telemedicine and Privacy Protection

Xiaorui Zhang, Xun Sun, Xingming Sun, Wei Sun, Sunil Kumar Jha

Summary: This paper proposes a two-stage reversible robust audio watermarking algorithm for protecting medical audio data. By decomposing the audio into two independent embedding domains and embedding different watermarks, the algorithm ensures both watermark robustness and audio quality. Experimental results demonstrate that the proposed scheme has strong robustness against various signal processing operations.

CMC-COMPUTERS MATERIALS & CONTINUA (2022)

Review Chemistry, Multidisciplinary

Recent Advances in Plasmonic Photocatalysis Based on TiO2 and Noble Metal Nanoparticles for Energy Conversion, Environmental Remediation, and Organic Synthesis

Ajay Kumar, Priyanka Choudhary, Ashish Kumar, Pedro H. C. Camargo, Venkata Krishnan

Summary: Plasmonic photocatalysis is a prominent field that efficiently utilizes sunlight to drive chemical reactions. Materials based on TiO2 and plasmonic nanoparticles are at the forefront of heterogeneous photocatalysis, with applications in energy conversion and wastewater treatment, among others. This review comprehensively covers the fundamentals and state-of-the-art concepts in this field, aiming to inspire the development of next-generation TiO2-based plasmonic photocatalysts.
Article Chemistry, Multidisciplinary

Nanoframes of Co3O4-Mo2N Heterointerfaces Enable High-Performance Bifunctionality toward Both Electrocatalytic HER and OER

Tingting Wang, Pengyan Wang, Wenjie Zang, Xin Li, Ding Chen, Zongkui Kou, Shichun Mu, John Wang

Summary: A hollow nanoframing strategy was devised for interconnected Co3O4-Mo2N heterostructures, leading to enhanced bifunctional catalytic activities due to the optimized heterointerface with strong electron interaction and favorable H2O/H* adsorption energies.

ADVANCED FUNCTIONAL MATERIALS (2022)

Review Energy & Fuels

Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers

David Wakerley, Sarah Lamaison, Joshua Wicks, Auston Clemens, Jeremy Feaster, Daniel Corral, Shaffiq A. Jaffer, Amitava Sarkar, Marc Fontecave, Eric B. Duoss, Sarah Baker, Edward H. Sargent, Thomas F. Jaramillo, Christopher Hahn

Summary: Chemicals and fuels can be generated from CO2 via electrolysers that employ gas diffusion electrodes. This review discusses the key advances and remaining shortfalls of GDE-based CO2 electrolysers, as well as provides an overview of partial current densities, efficiencies, and stabilities achieved.

NATURE ENERGY (2022)

Article Chemistry, Physical

Recent progress and future perspective on practical silicon anode-based lithium ion batteries

Lin Sun, Yanxiu Liu, Rong Shao, Jun Wu, Ruiyu Jiang, Zhong Jin

Summary: This article provides a brief overview of the development history of silicon anode lithium-ion batteries and highlights the challenges and countermeasures in practical applications. Solutions are proposed for structure regulation, interface modulation, and novel binder and electrolyte design, with a focus on future research on full cell performances and all solid-state batteries.

ENERGY STORAGE MATERIALS (2022)

Article Chemistry, Multidisciplinary

High-Stretchability, Ultralow-Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines

Zequn Shen, Zhilin Zhang, Ningbin Zhang, Jinhao Li, Peiwei Zhou, Faqi Hu, Yu Rong, Baoyang Lu, Guoying Gu

Summary: This research presents a conducting polymer hydrogel strain sensor with high strain and low hysteresis, achieved through a unique microphase semiseparated network design and facile fabrication methods. The strain sensor demonstrates superior performances in terms of stretchability, linearity, cyclic stability, and robustness against mechanical twisting and pressing. The integration and application of the strain sensor with electronic skins show its potentials in various fields such as physiological signal measurement, gesture recognition, and industrial robot control.

ADVANCED MATERIALS (2022)

Review Chemistry, Physical

High-performance thermoelectrics and challenges for practical devices

Qingyu Yan, Mercouri G. Kanatzidis

Summary: This review provides an overview of mid- to high-temperature thermoelectric materials and their applications, while highlighting the challenges that need to be addressed for commercial implementation. Research has shown the potential of thermoelectric materials in improving fuel utilization efficiency, but unresolved issues still hinder successful commercialization.

NATURE MATERIALS (2022)

Review Chemistry, Physical

Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis

Xiaobo Zheng, Beibei Li, Qishun Wang, Dingsheng Wang, Yadong Li

Summary: This review comprehensively outlines the recent exciting advances on novel atomically dispersed metal catalysts (NADMCs) with emphasis on understanding the synergistic interactions among multiple metal atoms and underlying structure-performance relationships. It discusses the synthetic approaches, characterizations, and energy-related applications of NADMCs, and provides insights into the remaining challenges and opportunities for their development.

NANO RESEARCH (2022)

Review Chemistry, Physical

Superiority of Dual-Atom Catalysts in Electrocatalysis: One Step Further Than Single-Atom Catalysts

Runze Li, Dingsheng Wang

Summary: This review introduces the recent research progress on how to design new DACs to enhance the performance of electrocatalysis. The advantages of DACs in increasing metal loading, changing the adsorption condition of reactant molecules, reducing the reaction energy barrier, and altering the reaction path are discussed. The catalytic applications in different electrocatalytic reactions are also explored.

ADVANCED ENERGY MATERIALS (2022)

Review Nanoscience & Nanotechnology

Synthesis and alignment of liquid crystalline elastomers

Katie M. Herbert, Hayden E. Fowler, Joselle M. McCracken, Kyle R. Schlafmann, Jeremy A. Koch, Timothy J. White

Summary: Liquid crystalline elastomers (LCEs) combine the elastic properties of rubber with the anisotropic properties of liquid crystals, allowing for multifunctionality and responsivity through local orientation patterning. Advances in materials chemistry and processing have paved the way for the functional integration of LCEs in various fields.

NATURE REVIEWS MATERIALS (2022)

Article Energy & Fuels

Atomically dispersed iron sites with a nitrogen-carbon coating as highly active and durable oxygen reduction catalysts for fuel cells

Shengwen Liu, Chenzhao Li, Michael J. Zachman, Yachao Zeng, Haoran Yu, Boyang Li, Maoyu Wang, Jonathan Braaten, Jiawei Liu, Harry M. Meyer, Marcos Lucero, A. Jeremy Kropf, E. Ercan Alp, Qing Gong, Qiurong Shi, Zhenxing Feng, Hui Xu, Guofeng Wang, Deborah J. Myers, Jian Xie, David A. Cullen, Shawn Litster, Gang Wu

Summary: In this study, a highly durable and active Fe-N-C catalyst was synthesized by depositing a thin layer of nitrogen-doped carbon on the catalyst surface. The stability improvement of the catalyst can overcome the cost barriers of hydrogen fuel cells.

NATURE ENERGY (2022)

Article Nanoscience & Nanotechnology

Size-Dependent Oxidation-Induced Phase Engineering for MOFs Derivatives Via Spatial Confinement Strategy Toward Enhanced Microwave Absorption

Hanxiao Xu, Guozheng Zhang, Yi Wang, Mingqiang Ning, Bo Ouyang, Yang Zhao, Ying Huang, Panbo Liu

Summary: A spatial confined growth strategy encapsulating small-size MOFs derivatives into hollow carbon nanocages was proposed, showing significant spatial confinement effect on the crystal size and dielectric polarization. The phase hybridization induced by size-dependent oxidation motion led to satisfying microwave attenuation, with optimal reflection loss and effective bandwidth achieved. The strategy offers a versatile methodology for manipulating the size of MOFs derivatives and optimizing dielectric polarization and microwave attenuation.

NANO-MICRO LETTERS (2022)

Article Energy & Fuels

Impact of declining renewable energy costs on electrification in low-emission scenarios

Gunnar Luderer, Silvia Madeddu, Leon Merfort, Falko Ueckerdt, Michaja Pehl, Robert Pietzcker, Marianna Rottoli, Felix Schreyer, Nico Bauer, Lavinia Baumstark, Christoph Bertram, Alois Dirnaichner, Florian Humpenoder, Antoine Levesque, Alexander Popp, Renato Rodrigues, Jessica Strefler, Elmar Kriegler

Summary: The rapid cost degression in photovoltaics, wind-power, and battery storage, along with climate policies like carbon pricing to reach the Paris Climate targets, could make electricity cheaper than carbon-based fuels. This could lead to electricity accounting for nearly two-thirds of global energy use by mid-century, inducing a fundamental transformation in energy systems.

NATURE ENERGY (2022)

Article Chemistry, Physical

Tough and stretchable ionogels by in situ phase separation

Meixiang Wang, Pengyao Zhang, Mohammad Shamsi, Jacob L. Thelen, Wen Qian, Vi Khanh Truong, Jinwoo Ma, Jian Hu, Michael D. Dickey

Summary: Ultra-tough and stretchable ionogels can be achieved by randomly copolymerizing two monomers with distinct solubility in an ionic liquid. These ionogels have high fracture strength, fracture energy, and Young's modulus, while being highly stretchable and possessing self-healing and shape-memory properties.

NATURE MATERIALS (2022)

Review Chemistry, Multidisciplinary

Surface Modification of 2D Photocatalysts for Solar Energy Conversion

Chengyang Feng, Zhi-Peng Wu, Kuo-Wei Huang, Jinhua Ye, Huabin Zhang

Summary: This article introduces the research progress in 2D photocatalysts based on varied compositions and functions, as well as specific surface modification strategies. The fundamental principles focusing on light harvesting, charge separation, and molecular adsorption/activation in the 2D-material-based photocatalytic system are systematically explored. Examples of various photocatalytic energy-conversion systems using 2D materials are described. Finally, the challenges and possible solutions for developing these 2D materials are discussed.

ADVANCED MATERIALS (2022)