Materials Science, Multidisciplinary

Article Chemistry, Physical

Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances

Yixin Han, Kunpeng Ruan, Junwei Gu

Summary: In this study, Janus (BNNS/ANF)-(AgNWs/ANF) composite films were successfully prepared, which exhibited one side insulating, one side conducting performance. The composite films showed high thermal conductivity, superior electromagnetic interference shielding effectiveness, good mechanical properties, stable temperature-voltage response characteristics, and reliable electrical stability.

NANO RESEARCH (2022)

Article Energy & Fuels

Formulating energy density for designing practical lithium-sulfur batteries

Guangmin Zhou, Hao Chen, Yi Cui

Summary: The authors analyze key Li-S cell parameters, propose an energy density calculation, and discuss the design targets for practical high-performance Li-S batteries.

NATURE ENERGY (2022)

Article Nanoscience & Nanotechnology

Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst

Feng-Yang Chen, Zhen-Yu Wu, Srishti Gupta, Daniel J. Rivera, Sten Lambeets, Stephanie Pecaut, Jung Yoon Timothy Kim, Peng Zhu, Y. Zou Finfrock, Debora Motta Meira, Graham King, Guanhui Gao, Wenqian Xu, David A. Cullen, Hua Zhou, Yimo Han, Daniel E. Perea, Christopher L. Muhich, Haotian Wang

Summary: The research team has efficiently converted nitrate, a common pollutant in wastewater and groundwater, into valuable ammonia products using a Ru-dispersed Cu nanowire catalyst through electrochemical methods. This sustainable approach not only treats wastewater but also generates ammonia, but current low catalytic activities pose challenges. However, the team has developed a high-performance catalyst that achieves over 99% nitrate conversion into ammonia and successfully obtains high purity NH4Cl solid and NH3 liquid products.

NATURE NANOTECHNOLOGY (2022)

Review Chemistry, Multidisciplinary

Advanced Flame-Retardant Methods for Polymeric Materials

Bo-Wen Liu, Hai-Bo Zhao, Yu-Zhong Wang

Summary: Most organic polymeric materials are highly flammable, causing significant damages to human life and property through the large amounts of smoke, toxic gases, heat, and melt drips produced during burning. Conventional flame-retardant methods are facing difficulties in meeting the increasing flame-retardant requirements. Advanced flame-retardant methods, such as all-in-one intumescence and nanotechnology, have been developed to provide potential solutions to these challenges.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Multifunctional Superelastic, Superhydrophilic, and Ultralight Nanocellulose-Based Composite Carbon Aerogels for Compressive Supercapacitor and Strain Sensor

Huayu Liu, Ting Xu, Chenyang Cai, Kun Liu, Wei Liu, Meng Zhang, Haishun Du, Chuanling Si, Kai Zhang

Summary: In this study, conductive carbon aerogels with ultralow density and superhydrophilicity were developed based on synergistic hydrogen bonding, electrostatic interaction, and pi-pi interaction within regularly arranged layered porous structures. These aerogels exhibit high compressibility, fatigue resistance, excellent capacitive performance, and can be used as strain sensors.

ADVANCED FUNCTIONAL MATERIALS (2022)

Review Nanoscience & Nanotechnology

A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications

Luka Dordevic, Francesca Arcudi, Michele Cacioppo, Maurizio Prato

Summary: This review focuses on the importance of photoluminescent carbon nanoparticles, or carbon dots, for biomedical and energy applications. These nanomaterials exhibit tunable light emission, dispersibility, and low toxicity, making them highly attractive for various purposes. The review discusses how chemical tools can impact the properties of carbon dots and presents synthetic strategies for functionalizing these nanomaterials. Examples are provided to illustrate the correlation between structure, composition, and function, offering insights into the future development of carbon dots.

NATURE NANOTECHNOLOGY (2022)

Review Nanoscience & Nanotechnology

Advances and applications of nanophotonic biosensors

Hatice Altug, Sang-Hyun Oh, Stefan A. Maier, Jiri Homola

Summary: This Review presents the progresses in label-free nanophotonic biosensors based on photonic or dielectric surfaces and metasurfaces, and discusses their challenges and benefits in the fields of public health, well-being, and biosafety. Nanophotonic devices can control light and enhance light-matter interactions at subwavelength scales, offering exciting prospects for biosensing applications.

NATURE NANOTECHNOLOGY (2022)

Review Materials Science, Multidisciplinary

Heterostructured materials

Yuntian Zhu, Xiaolei Wu

Summary: Heterostructured materials are a new class of materials composed of heterogeneous zones with dramatically different properties. They exhibit superior mechanical or physical properties that surpass their conventional homogenous counterparts. This review focuses on the structural heterostructured materials, which achieve their superior mechanical properties through hetero-deformation induced strengthening and work hardening. The unique deformation behavior of these materials, along with their wide application potential, is driving the rapid development of the field.

PROGRESS IN MATERIALS SCIENCE (2023)

Article Chemistry, Multidisciplinary

Application of MOFs and COFs for photocatalysis in CO2 reduction, H2 generation, and environmental treatment

Yifeng Zhang, Hangxi Liu, Feixue Gao, Xiaoli Tan, Yawen Cai, Baowei Hu, Qifei Huang, Ming Fang, Xiangke Wang

Summary: MOFs and COFs, as important photocatalytic materials, have high physical/chemical stability and structural diversity, and are widely used in CO2 reduction, H2 generation, and environmental pollution treatment. By summarizing the methods and mechanisms to improve their photocatalytic performance, the development of the photocatalysis field is expected to be further promoted.

ENERGYCHEM (2022)

Review Nanoscience & Nanotechnology

Conductive Biomaterials as Bioactive Wound Dressing for Wound Healing and Skin Tissue Engineering

Rui Yu, Hualei Zhang, Baolin Guo

Summary: This review summarizes the design and application of conductive biomaterials for wound healing and skin tissue engineering. Conductive biomaterials with various structural forms, such as films, nanofibers, membranes, hydrogels, sponges, foams, and acellular dermal matrix, play important roles in electrotherapy, wound dressing, and wound assessment, and possess promising applications in the field.

NANO-MICRO LETTERS (2022)

Review Chemistry, Multidisciplinary

Recent Advances in Design of Electrocatalysts for High-Current-Density Water Splitting

Yuting Luo, Zhiyuan Zhang, Manish Chhowalla, Bilu Liu

Summary: The electrochemical water splitting technology is crucial for achieving global carbon neutrality. High-performance electrocatalysts that can operate at high current densities are essential for the industrial implementation of this technology. Recent advancements in this field have led to the development of various catalysts designed specifically for high current densities (> 200 mA cm(-2)). This article discusses these recent advances and summarizes the key factors that influence the catalytic performance in high current density electrocatalysis, including catalyst dimensionality, surface chemistry, electron transport path, morphology, and catalyst-electrolyte interaction. It highlights the importance of a multiscale design strategy that considers these factors comprehensively for developing high current density electrocatalysts. The article also provides insights into the future directions of this emerging field.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

MIL-96-Al for Li-S Batteries: Shape or Size?

Pengbiao Geng, Lei Wang, Meng Du, Yang Bai, Wenting Li, Yanfang Liu, Shuangqiang Chen, Pierre Braunstein, Qiang Xu, Huan Pang

Summary: Metal-organic frameworks with controllable shapes and sizes, specifically MIL-96-Al crystals in hexagonal platelet, hexagonal bipyramidal, and hexagonal prismatic bipyramidal shapes, were prepared successfully using cosolvent methods. The shape and particle size of the MOF crystals were found to influence the adsorption of lithium polysulfides, impacting the initial capacity in Li-S batteries. These findings suggest a new strategy for designing sulfur hosts in Li-S batteries.

ADVANCED MATERIALS (2022)

Review Materials Science, Multidisciplinary

Electromagnetic absorption materials: Current progress and new frontiers

Hualiang Lv, Zhihong Yang, Hongge Pan, Renbing Wu

Summary: This article provides a comprehensive review of the current status and new frontiers in electromagnetic absorption materials. It covers the fundamentals, chemical strategies, and new advances in traditional and next-generation materials. The article concludes with an outlook on future research and challenges in this field.

PROGRESS IN MATERIALS SCIENCE (2022)

Article Chemistry, Multidisciplinary

Simultaneous Interfacial Modification and Crystallization Control by Biguanide Hydrochloride for Stable Perovskite Solar Cells with PCE of 24.4%

Zhuang Xiong, Xiao Chen, Bo Zhang, George Omololu Odunmbaku, Zeping Ou, Bing Guo, Ke Yang, Zhipen Kan, Shirong Lu, Shanshan Chen, Nabonswende Aida Nadege Ouedraogo, Yongjoon Cho, Changduk Yang, Jiangzhao Chen, Kuan Sun

Summary: In this study, a multifunctional interfacial material, BGCl, was introduced to modify the interface of perovskite solar cells. The BGCl improved electron extraction and crystal growth of perovskite by chemically linking to SnO2 and anchoring PbI2. This modification led to better energetic alignment, reduced interfacial defects, and homogeneous perovskite crystallites, resulting in highly efficient and stable performance.

ADVANCED MATERIALS (2022)

Article Nanoscience & Nanotechnology

Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries

Xiao Hai, Shibo Xi, Sharon Mitchell, Karim Harrath, Haomin Xu, Dario Faust Akl, Debin Kong, Jing Li, Zejun Li, Tao Sun, Huimin Yang, Yige Cui, Chenliang Su, Xiaoxu Zhao, Jun Li, Javier Perez-Ramirez, Jiong Lu

Summary: A general approach combining wet-chemistry impregnation and two-step annealing enables the scalable synthesis of ultra-high-density single-atom catalysts with metal contents up to 23 wt%, showcasing significantly enhanced reactivity. This method allows for the exploration of a vast library of mono- or multimetallic catalysts with tunable metal loadings.

NATURE NANOTECHNOLOGY (2022)

Article Chemistry, Physical

Desired open-circuit voltage increase enables efficiencies approaching 19% in symmetric-asymmetric molecule ternary organic photovoltaics

Lingling Zhan, Shuixing Li, Yaokai Li, Rui Sun, Jie Min, Zhaozhao Bi, Wei Ma, Zeng Chen, Guangqing Zhou, Haiming Zhu, Minmin Shi, Lijian Zuo, Hongzheng Chen

Summary: By constructing ternary organic photovoltaics, the open-circuit voltage (V-oc) loss is reduced, leading to a higher voltage without sacrificing the absorbing range. In addition, the ternary blend exhibits enhanced charge transport property and a higher fill factor.
Article Nanoscience & Nanotechnology

Vertically Aligned Silicon Carbide Nanowires/ Boron Nitride Cellulose Aerogel Networks Enhanced Thermal Conductivity and Electromagnetic Absorbing of Epoxy Composites

Duo Pan, Gui Yang, Hala M. Abo-Dief, Jingwen Dong, Fengmei Su, Chuntai Liu, Yifan Li, Ben Bin Xu, Vignesh Murugadoss, Nithesh Naik, Salah M. El-Bahy, Zeinhom M. El-Bahy, Minan Huang, Zhanhu Guo

Summary: A cellulose aerogel with highly enhanced thermal conductivity was successfully obtained by constructing a vertically aligned silicon carbide nanowires/boron nitride network. The composite exhibited significantly increased thermal conductivity compared to pure epoxy, both in vertical and horizontal directions. Additionally, it showed good electrical insulation and excellent electromagnetic wave absorption performance.

NANO-MICRO LETTERS (2022)

Article Chemistry, Multidisciplinary

A High-Performance, Sensitive, Wearable Multifunctional Sensor Based on Rubber/CNT for Human Motion and Skin Temperature Detection

Mengzhuan Lin, Zhongjie Zheng, Li Yang, Mingshan Luo, Lihua Fu, Baofeng Lin, Chuanhui Xu

Summary: A hydrogen bond cross-linked network based on XSBR and SS non-covalently modified CNTs has been designed and fabricated into multi-functional sensors, with high stretchability, strength, and sensitivity, as well as the ability to measure body temperature.

ADVANCED MATERIALS (2022)

Article Chemistry, Multidisciplinary

Charge Relays via Dual Carbon-Actions on Nanostructured BiVO4 for High Performance Photoelectrochemical Water Splitting

Yuxiang Wang, Daoming Chen, Jingnan Zhang, M-Sadeeq (Jie Tang) Balogun, Pingshan Wang, Yexiang Tong, Yongchao Huang

Summary: Carbon doping and introduction of carbon quantum dots can improve the electronic conductivity and light absorption capability of BiVO4, thus enhancing the separation and transfer of photo-generated charges. Electroplating a polyaniline layer onto the catalyst can sustain a stable photocurrent density for a long time.

ADVANCED FUNCTIONAL MATERIALS (2022)

Review Nanoscience & Nanotechnology

Soft actuators for real-world applications

Meng Li, Aniket Pal, Amirreza Aghakhani, Abdon Pena-Francesch, Metin Sitti

Summary: Soft actuators are flexible and compliant, making them perfectly suited for interacting with the human body. While they have promising real-world applications, challenges remain in implementing physical intelligence, improving performance and multifunctionality, as well as manufacturing scalability and extending lifetime.

NATURE REVIEWS MATERIALS (2022)