Engineering, Multidisciplinary

Article Automation & Control Systems

Influence of cost/loss functions on classification rate: A comparative study across diverse classifiers and domains

Fatemeh Chahkoutahi, Mehdi Khashei

Summary: The classification rate is the most important factor in selecting an appropriate classification approach. In this paper, the influence of different cost/loss functions on the classification rate of different classifiers is compared, and empirical results show that cost/loss functions significantly affect the classification rate.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Engineering, Multidisciplinary

An innovative interval grey model for construction waste forecasting

Yan Xu, Tong Lin, Pei Du, Jianzhou Wang

Summary: In this study, a novel construction waste prediction model is proposed, in which the time-delayed coefficient is optimized using optimization algorithms. Through comparisons with other models, it is demonstrated to be effective, and scenario analysis and discussions of future construction waste are presented.

APPLIED MATHEMATICAL MODELLING (2024)

Article Automation & Control Systems

A method of user recruitment and adaptation degree improvement via community collaboration in sparse mobile crowdsensing systems

Jian Wang, Xiuying Zhan, Yuping Yan, Guosheng Zhao

Summary: This paper proposes a method of user recruitment and adaptation degree improvement via community collaboration to solve the task allocation problem in sparse mobile crowdsensing. By matching social relationships and perception task characteristics, the entire perceptual map can be accurately inferred.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Thermodynamics

Reverse combustion propagation in an oxygen-limited and -enriched N2/O2 flow for a bed packed with rice husk

Xiaobin Qi, Songyan Gao, Zhiping Zhu, Qinggang Lyu, Haixia Zhang

Summary: This study experimentally investigated the propagation characteristics of reverse combustion under oxygen-limited and enriched conditions. The contribution of volatiles gas-phase oxidation and char surface oxidation to reverse combustion was evaluated. The results showed that oxygen enrichment expanded the operating range of oxygen flow rate for reverse combustion and enhanced the low-temperature oxidation of the solid fuel. The findings provide a better understanding of the driving mechanism of reverse combustion and have important implications for efficient thermal conversion of solid fuels.

COMBUSTION AND FLAME (2024)

Article Engineering, Multidisciplinary

Three novel computational modeling frameworks of 3D-printed graphene platelets reinforced functionally graded triply periodic minimal surface (GPLR-FG-TPMS) plates

Kim Q. Tran, Tien-Dat Hoang, Jaehong Lee, H. Nguyen-Xuan

Summary: This study presents novel frameworks for graphene platelets reinforced functionally graded triply periodic minimal surface (GPLR-FG-TPMS) plates and investigates their performance through static and free vibration analyses. The results show that the mass density framework has potential for comparing different porous cores and provides a low weight and high stiffness-to-weight ratio. Primitive plates exhibit superior performance among thick plates.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

High-resolution strategy for localized method of approximate particular solutions to solve unsteady Navier-Stokes problems

Xueying Zhang, Yangjiong Wu

Summary: This paper proposes a high resolution strategy for the localized method of approximate particular solutions (LMAPS). The strategy aims to improve the accuracy and stability of numerical calculation by selecting upwind interpolation templates. Numerical results demonstrate that the proposed high-resolution LMAPS is effective and accurate, especially for solving the Navier-Stokes equations with high Reynolds number.

ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS (2024)

Article Engineering, Multidisciplinary

An efficient model for vehicle-track-soil dynamic interaction based on Green's function, cyclic calculation and multi-time-step solution methods

Zheng Li, Lei Xu

Summary: A hybrid integration method based on the implicit scheme and Green's function is proposed in this paper to optimize the dynamic procedure for high-efficient solution of vehicle-track-soil dynamic interaction. The feasibility and efficiency of the proposed model, combining the hybrid integration method and two optimized dynamic solution strategies, are fully demonstrated through detailed validation, discussion, and numerical studies.

APPLIED MATHEMATICAL MODELLING (2024)

Article Automation & Control Systems

Multilinear subspace learning for Person Re-Identification based fusion of order tensor features

Ammar Chouchane, Mohcene Bessaoudi, Hamza Kheddar, Abdelmalik Ouamane, Tiago Vieira, Mahmoud Hassaballah

Summary: Video surveillance image analysis and processing is an important field in computer vision, and Person Re-Identification (PRe-ID) is a challenging task within this field. This article proposes a method called High-Dimensional Feature Fusion (HDFF), which combines two powerful features and utilizes tensor fusion and multilinear subspace learning to improve the accuracy of pedestrian image identification.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

Invariant Representations Learning with Future Dynamics

Wenning Hu, Ming He, Xirui Chen, Nianbin Wang

Summary: This paper proposes a new representation learning method (RLF), which learns long-term dynamics using graph neural networks and trains the representation network based on a new state metric inspired by bisimulation relation. Experiments show that RLF can mine more stable state embeddings in continuous control tasks, and the learned policy on top of the embeddings has higher sample efficiency, performance, and generalization capability.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

A novel parsimonious spherical fuzzy analytic hierarchy process for sustainable urban transport solutions

Sarbast Moslem

Summary: This study provides a sustainable and efficient solution for improving the public bus transport system in Dublin city. By attracting private car users, it aims to reduce CO2 emissions, minimize traffic congestions, and maximize commuter satisfaction. Using the parsimonious analytic hierarchy process model, the study evaluates uncertainty and decision maker scoring, providing consistent and reliable results.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Automation & Control Systems

A sentiment analysis method for COVID-19 network comments integrated with semantic concept

Jun Li, Lanlan Jiang, Guimin Huang, Jingwei Zhang

Summary: The new coronavirus COVID-19 has caused great disaster worldwide, and China has effectively controlled the situation. This paper collected Chinese microblogs, forums, and online comments to conduct a sentiment analysis of the latest comments about COVID-19. By integrating the semantics of words, the accuracy of sentiment analysis was substantially improved.

ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE (2024)

Article Engineering, Multidisciplinary

Advanced finite element analyses to compute the J-integral for delaminated composite plates

Bence Hauck, Andras Szekrenyes

Summary: This study explores several methods for computing the J-integral in laminated composite plate structures with delamination. It introduces two special types of plate finite elements and a numerical algorithm. The study presents compact formulations for calculating the J-integral and applies matrix multiplication to take advantage of plate transition elements. The models and algorithms are applied to case studies and compared with analytical and previously used finite element solutions.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

Experimental research of stress state and residual stresses of the hydropower pipeline branch model

Stefan Culafic, Darko Bajic, Tasko Maneski

Summary: This paper presents experimental research on a branch model conducted in laboratory conditions. The study verifies the linear relationship between stress and internal pressure in the field of elasticity and reveals the occurrences when stresses exceed the yield strength of the branch material, such as plastic deformations of the branch model. The research also defines the dependence of stress on internal pressure in both the field of elasticity and the zone of residual stresses.

INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING (2024)

Article Engineering, Multidisciplinary

Nonlinear torsional buckling of corrugated core sandwich toroidal shell segments with graphene-reinforced coatings in temperature change using the Ritz energy method

Thuy Dong Dang, Thi Kieu My Do, Minh Duc Vu, Ngoc Ly Le, Tho Hung Vu, Hoai Nam Vu

Summary: This paper investigates the nonlinear torsional buckling of corrugated core sandwich toroidal shell segments with functionally graded graphene-reinforced composite (FG-GRC) laminated coatings in temperature change using the Ritz energy method. The results show the significant beneficial effects of FG-GRC laminated coatings and corrugated core on the nonlinear buckling responses of structures.

APPLIED MATHEMATICAL MODELLING (2024)

Article Engineering, Multidisciplinary

Interlaminar shear strength of Carbon/PEEK thermoplastic composite laminate: Effects of in-situ consolidation by automated fiber placement and autoclave re-consolidation

Emad Pourahmadi, Farjad Shadmehri, Rajamohan Ganesan

Summary: This research compares the mechanical properties of laminates manufactured using automated fiber placement and conventional autoclave curing methods. The results show that laminates manufactured using automated fiber placement have a lower interlaminar shear strength compared to laminates reconsolidated using autoclave curing. A finite element simulation method is proposed to quantitatively analyze these differences.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Novel multi-crack damage approach for pultruded fiber-polymer web-flange junctions

Gisele G. Cintra, Janine D. Vieira, Daniel C. T. Cardoso, Thomas Keller

Summary: This paper proposes a novel approach to assess multi-crack behavior in layered fiber-polymer composites. The generated Compliance and R-curves provide useful insights into understanding the multiple delamination process and allow for separate evaluation of strain energy release rate (SERR) for each crack. The developed cohesive zone model successfully simulates the failure process zone of three parallel cracks, showing good agreement between the numerical model and experimental results.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Asymmetric wettability fibrous membranes: Preparation and biologic applications

Mingyu Zhang, Lei Chu, Jiahua Chen, Fuxun Qi, Xiaoyan Li, Xinliang Chen, Deng-Guang Yu

Summary: This review summarizes the different structures and construction methods of fibrous membranes with asymmetric wettability. It also reviews the biological applications of these membranes and suggests future challenges.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Effect of fibre concentration on the mechanical properties of welded reinforced polypropylene

E. Mofakhami, L. Gervat, B. Fayolle, G. Miquelard-Garnier, C. Ovalle, L. Laiarinandrasana

Summary: This study investigates the effects of fibre concentration on the mechanical response of welded glass-fibre-reinforced polypropylene (GF-PP). Experimental observations reveal a significant reduction in weld ratio, up to 60%, indicating a decreased strength compared to the bulk material. Increasing fibre content in the welded material results in a decrease in stress at break and strain at the maximum stress. The use of DIC technique and X-ray microtomography further confirms the localized strain amplification in the welded zone due to the significant increase in fibre density.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Bolted joint method for composite materials using a novel fiber/metal patch as hole reinforcement-Improving both static and fatigue properties

Johnny Jakobsen, Benny Endelt, Fahimeh Shakibapour

Summary: This study proposes a new bolted/pinned joining method for composite applications, which improves load transfer by introducing a patch-type reinforcement. Experimental results demonstrate significant improvements in both static and fatigue load conditions compared to existing methods. Finite element simulations highlight the advantage of this method, as it creates a more efficient load-transferring mechanism through different stress distributions.

COMPOSITES PART B-ENGINEERING (2024)

Article Engineering, Multidisciplinary

Uncovering the hidden structure: A study on the feasibility of induction thermography for fiber orientation analysis in CFRP composites using 2D-FFT

Renil Thomas Kidangan, Sreedhar Unnikrishnakurup, C. Krishnamurthy, Krishnan Balasubramaniam

Summary: The induction heating process can accurately identify fiber orientation and stacking order, making it a valuable tool for large-area inspection and quality control in manufacturing fiber-reinforced composites.

COMPOSITES PART B-ENGINEERING (2024)