Engineering, Marine

Article Engineering, Marine

Assessing scour prediction models for monopiles in sand from the perspective of design robustness

Xinwei Chen, Yang Yu, Lei Wang

Summary: This study introduces a framework to evaluate and compare scour prediction models, focusing on design robustness. By applying this framework, the study recommends the most favorable scour prediction model and optimal design for monopiles in OWTs.

MARINE STRUCTURES (2024)

Article Engineering, Marine

Ship grounding model tests in a water tank: An experimental study

Ling Zhu, Zhihui Zhou, Preben Terndrup Pedersen

Summary: Ship grounding experiments are crucial for validating numerical analysis and theoretical formulations. In this study, small-scale ship model grounding tests on a sharp rock were conducted in a water tank to observe and record different damage modes, ship bottom plate damage extents, and ship motion. The test results were used to analyze the energy dissipation process and the influence of initial conditions on ship response and damage.

MARINE STRUCTURES (2024)

Article Engineering, Marine

A prediction method for fatigue crack growth under high stress levels using accumulative plastic damage properties

Yuelin Song, Qin Dong, Jiping Zhang, Guoqiang Li, Dongfang Xu, Ping Yang

Summary: The objective of this research is to study the characteristics of low-cycle fatigue crack propagation from the perspective of accumulative plastic damage and propose a reliable prediction model for crack growth in EH-36 steel under high stress levels. Experimental findings demonstrate that increasing the mean stress and stress amplitude accelerates the progression of fatigue damage.

MARINE STRUCTURES (2024)

Article Engineering, Marine

Predictions of multi-scale vortex-induced vibrations based on a multi-fidelity data assimilation method

Lihua Xu, Jiasong Wang, Michael S. Triantafyllou, Dixia Fan

Summary: This paper presents a data assimilation method based on the POD-DeepONet structure to fuse two types of fidelity data from vortex-induced vibration (VIV) problems. The POD-DeepONet structure provides better accuracy and more stable predictions for amplitude response, successfully capturing the changing trend with the oncoming flow speed. The exponentially fitted MSE formula allows for quick determination of the required case number under the expected error.

MARINE STRUCTURES (2024)

Article Engineering, Marine

Heat treatment effects on collapse of JCO-E steel pipes under external pressure: Experiments and numerical predictions

Ilias Gavriilidis, Aris G. Stamou, Christos Palagas, Efthimios Dourdounis, Nikos Voudouris, Athanasios Tazedakis, Spyros A. Karamanos

Summary: This study investigated the collapse resistance of thick-walled steel pipes fabricated with the JCO-E process for deep offshore applications. It conducted a comprehensive analysis using experimental, numerical, and analytical approaches to examine the effects of heat treatment on the collapse behavior of two JCO-E pipes. The results were compared with the predictions of the DNV-ST-F101 standard, and the fabrication factor afa was discussed. The study also explored the impact of yield strength recovery due to heat treatment on the collapse of pipes with different D/t ratios.

MARINE STRUCTURES (2024)

Article Engineering, Marine

An efficient method for estimating the structural stiffness of flexible floating structures

Baoshun Zhou, Zhixun Yang, Mostafa Amini-Afshar, Yanlin Shao, Harry B. Bingham

Summary: In the hydroelastic analysis of large floating structures, accurate prediction of response relies on the structural stiffness. However, obtaining exact structural stiffness is challenging due to the complexity of modern ship structures. This study proposes an efficient analysis technique that combines finite element and finite difference methods to calculate structural stiffness and solve hydrodynamic problems.

MARINE STRUCTURES (2024)

Article Engineering, Marine

A study on auxetic-inspired side structure for enhanced crashworthiness

Chunhao Jiang, Lin Lin, Nian-Zhong Chen

Summary: A novel type of side structure for enhancing the crashworthiness of double-hull vessels is proposed based on auxetic materials. Numerical simulation demonstrates the resistance to collision of three different unit cells. A comparative study shows that the proposed side structures have superior energy absorption and collision resistance compared to traditional side structures.

MARINE STRUCTURES (2024)

Article Engineering, Marine

A floating system integrating a wind turbine with a steel fish farming cage: Experimental validation of the hydrodynamic model

Yu Lei, Wei Li, Xiang Yuan Zheng, Huadong Zheng, Shan Gao, Shengxiao Zhao

Summary: This paper compares the numerical results of a floating offshore wind turbine integrated with a steel fish farming cage (FOWT-SFFC) against experimental data. The study shows that the simulated responses are in good agreement with the experimental data and reveals the important influence of second-order wave forces on the simulation results.

MARINE STRUCTURES (2024)

Article Engineering, Marine

Coupled analysis between catenary mooring and VLFS with structural hydroelasticity in waves

Yujia Wei, Shuangrui Yu, Peng Jin, Luofeng Huang, Khaled Elsherbiny, Tahsin Tezdogan

Summary: This paper presents a time-domain hydro-elastic-moored model to investigate the coupled effects between structural hydroelasticity and loose-type mooring systems on a deformable VLFS. The results can be used to design a VLFS with mooring in medium-deep sea and help with the conventional mooring design for a less-stiffness VLFS due to hydroelastic response.

MARINE STRUCTURES (2024)

Article Engineering, Marine

Shear lag effects on global bending moments in a long-span pontoon bridge under self-weight, traffic and environmental loads

Chenyu Luan, Torgeir Moan, Knut Andreas Kvale, Zhengshun Cheng

Summary: This paper deals with the study of the shear lag effect on the bending moment distribution in pontoon-type floating bridges. Comparative and parametric studies are carried out using beam and linear shell models to analyze the influence of shear lag on the bending stiffness and eigenmode shapes of the bridges. The study shows that elementary beam models may inaccurately predict the bending moments in bridges with large width and short span lengths, and a practical method is proposed to determine when caution is needed in using these models. The paper also highlights the complex boundary conditions near the bank abutment and the significant influence of shear lag on the bending moments in this region.

MARINE STRUCTURES (2024)

Article Engineering, Marine

Time-dependent responses and mooring tensions of a moored floating structure in tsunami waves

Sung-Jae Kim, Chungkuk Jin, MooHyun Kim

Summary: This study evaluates the effects of tsunami waves on the global performance of a spread-moored Floating Storage Unit (FSU) through tsunami-floater-mooring coupled dynamics simulations. The results show that larger tsunami heights and relatively short durations result in significantly increased motions and mooring tensions of the FSU.

MARINE STRUCTURES (2024)

Article Engineering, Marine

Wave-frequency and low-frequency motions of a deep-draft spar buoy in irregular waves based on a consistent second-order theory

Zhiping Zheng, Yanlin Shao, Jikang Chen

Summary: This study investigates the effect of horizontal low-frequency (LF) displacements and velocities on the responses of floating structures in irregular waves, focusing on a deep-draft spar buoy. The study finds that incorporating LF displacements and velocities in the seakeeping analysis is essential for reducing surge and pitch responses. The standard deviations of LF surge and pitch motions scale with significant wave height, highlighting viscous damping as the dominating damping mechanism.

MARINE STRUCTURES (2024)

Article Engineering, Marine

Investigating the effects of Coating systems on the degradation behavior of 3D-Printed pressure vessels

Birendra Chaudhary, Hewenxuan Li, Akongnwi Nfor Ngwa, Helio Matos

Summary: This study investigates the long-term performance and effectiveness of coating systems for 3D-printed pressure vessels subjected to accelerated aging. The results show that the application of polyurethane coating systems significantly slows the degradation process, reducing critical operational depth and increasing pressure differential. This research contributes important insights into enhancing the longevity and performance of 3D-printed pressure vessels through coating systems.

MARINE STRUCTURES (2024)

Article Engineering, Marine

Bending moment capacity and failure mechanism of caisson foundations under monotonic and cyclic loading in clay

Yang-Bin Chen, Yong Fu, Min-Hao Zhang, Zhen-Yu Yin, Jian Cheng

Summary: This paper systematically investigates the bending moment capacity and failure mechanism of caisson foundations under monotonic and cyclic loading in clay using finite element analyses. The influence of caisson-soil contact mode and soil strength reduction during installation is also explored. The study provides insights into the behavior of caisson foundations and can contribute to their design.

MARINE STRUCTURES (2024)

Article Engineering, Marine

Propagation and arrest of collapse failures in a buried offshore pipeline crossing reverse fault areas

Zhenmian Li, Yang Yu, Xin Liu, Xiaowei Liu, Xiangyang Wang, Leige Xu, Jianxing Yu

Summary: This study evaluates the local collapses and propagating buckles of offshore pipelines under external overpressure, reverse fault displacements, and collapse failures. Different designs of integral arrestors are tested in a numerical model, and the effects of fault dip angles are investigated. The results show that integral arrestors are effective in preventing propagating buckles.

MARINE STRUCTURES (2024)

Article Engineering, Marine

Hydrodynamic experiment of submerged floating tunnel under regular wave and current actions during construction period

Hao Ding, Bo Huang, Liang Cheng, Ke Li, Qingyang Ren

Summary: This study investigates the dynamic response and cable forces of a submerged floating tunnel (SFT) under wave and wave-current interactions. Experimental results show that wave height, current velocity, and ratio of wavelength to structure size are important factors affecting the dynamic response of SFT and cable forces. The multi-anchor cable arrangement used in the experiments distributes cable forces more effectively and reduces potential safety hazards caused by cable breakage.

MARINE STRUCTURES (2024)

Article Engineering, Marine

The model of vessel trajectory abnormal behavior detection based on graph attention prediction and reconstruction network

Hongdan Liu, Zhicheng Jia, Bing Li, Yan Liu, Zhigang Qi

Summary: This paper explores the monitoring and detection mechanism of vessel abnormal behavior based on Graph Attention Prediction and Reconstruction Network. It proposes a sliding window mechanism to generate fixed data input, effectively capturing the inter-dependencies among vessel behavior characteristics. The proposed mechanism dynamically adjusts the anomaly detection threshold based on variations in the marine environment, leading to an enhancement in the accuracy of detecting abnormal behavior in vessels.

OCEAN ENGINEERING (2023)

Article Engineering, Marine

Improved performance of land-fixed oscillating water column through dual chamber design

Heath Palmer, Ming Zhao, Helen Wu, Pan Hu, Mohammad Rashed Mia, Chengwang Lei

Summary: This study investigates the improvement of hydrodynamic efficiency in dual chamber oscillating water columns (OWC) through numerical simulations. The results show that the dual chamber dual turbine configuration achieves higher efficiency compared to single chamber single turbine and dual chamber shared turbine configurations, operating over a broader range of wavelengths.

OCEAN ENGINEERING (2023)

Article Engineering, Marine

Impact of flapping trajectory and foil gap on induced thrust of a flapping foil

Ashok Kumar Pradhan, Ashok Kumar Barik, Manmatha Kumar Roul, Prafulla Kumar Swain

Summary: This study examines the tandem hydrofoil with two new flapping trajectories, elliptical and fishtail, to enhance induced thrust. Computational methods are used to analyze the hydrodynamic efficiency and the effects of Strouhal number and inter-foil spacing on the tandem hydrofoil.

OCEAN ENGINEERING (2023)

Article Engineering, Marine

Effect of wave motion on the scouring caused by a marine propeller jet: An experimental and numerical study

Domenico Ferraro, Francesco Aristodemo, Agostino Lauria, Emilio Lazzaro, Davide Pasquali, Marcello Di Risio

Summary: This paper addresses the influence of waves on propeller jets in unconfined conditions, leading to alterations in scour and deposition patterns. Experimental tests and numerical simulations were conducted to investigate the effects of wave-induced velocity on the propeller jets hydrodynamics, providing insights into the complex bathymetry configuration induced by the propeller jet and waves.

OCEAN ENGINEERING (2023)