Engineering, Geological

Article Computer Science, Interdisciplinary Applications

Finite discrete element modeling of desiccation fracturing in partially saturated porous medium

Nima Haghighat, Amir Shoarian Sattari, Frank Wuttke

Summary: A numerical framework is proposed for analyzing desiccation fracturing in variably saturated porous media, and its capabilities in capturing unsaturated porous medium flow and coupled hydro-mechanical effects are tested against benchmark solutions. The mechanisms of desiccation cracking in soils are thoroughly investigated.

COMPUTERS AND GEOTECHNICS (2024)

Article Engineering, Geological

Investigating earthquake-induced irregularity based on post-earthquake running performance analysis of track-bridge system

Shaohui Liu, Lizhong Jiang, Wangbao Zhou, Jian Yu

Summary: This study evaluates the post-earthquake damage to track-bridge systems by conducting nonlinear time history analysis on a CRTS II ballastless track simply-supported beam system subjected to transverse earthquake loading. It explores the characteristics of residual displacement and stiffness degradation of the track-bridge system under transverse earthquakes. The research investigates the effect of earthquake-induced stiffness degradation on high-speed trains and proposes a reconstruction method for earthquake-induced dynamic irregularity characteristic curve considering probability guarantee rates. The results indicate that earthquake-induced dynamic irregularity can effectively quantify the running performance of high-speed trains under earthquake-induced stiffness degradation conditions.

SOIL DYNAMICS AND EARTHQUAKE ENGINEERING (2024)

Article Computer Science, Interdisciplinary Applications

Numerical analysis of the post-installation consolidated response of skirted foundations

Yurong Zhang, Shuntao Fan, Sa Li, Zhenyi Shen

Summary: This study analyzes the effect of the installation process on the subsequent foundation consolidation response. By comparing the results from large deformation finite element analysis and small strain finite element model, the influence of large soil deformations on consolidated bearing capacity is examined. The relationship between preload and settlement is determined and a revised time factor function is proposed.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Analytical solution for consolidation of saturated viscoelastic soils around tunnels with general Voigt model

Anfeng Hu, Senlin Xie, Zhirong Xiao, Xunjian Hu, Meihui Wang, Yuan Chen, Yiyang Chen

Summary: This paper presents a novel analytical solution for the consolidation behavior of viscoelastic saturated soft soil under large-scale ground loading. The study shows that the soil permeability coefficient, Newtonian viscosity coefficient, and Hooke's spring modulus have significant influences on the dissipation of excess pore water pressure and the degree of consolidation. The permeability condition of the tunnel also affects the distribution of excess pore water pressure in the soil layer above the tunnel.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Insight into enhancing foundation stability with rubber-soil mixtures: A nanofriction study

Jian-Hong Wan, Ali Zaoui

Summary: Ground vibrations during earthquakes can cause soil strength loss and structural damage. Rubber-soil mixtures (RSM) have shown promise in reducing residual ground deformation. This study used molecular dynamics simulations to investigate the friction behavior of the rubber-clay interface in RSM systems. The results revealed a direct correlation between normal stress and friction force, with denser soil systems exhibiting higher friction forces.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Elastoplastic solution of a circular tunnel in surrounding rock with any nonlinear yield criteria and plastic flow envelopes

Hongying Wang, Qiang Zhang, Peinan Wu, Yanjing Li, Lijun Han, Guilei Han

Summary: In addition to the Mohr-Coulomb and Hoek-Brown criteria, other nonlinear functions are used to describe the plastic response of rock mass. This paper derived the equivalent cohesive strength, frictional angle, and dilatancy angle for nonlinear yield and plastic flow rock masses. The solution for a circular tunnel in any nonlinear yield and plastic flow rock masses was derived and verified using a numerical procedure. The analysis of strain-softening rock masses under two assumed nonlinear yield criteria was also studied.

COMPUTERS AND GEOTECHNICS (2024)

Article Engineering, Geological

Post-liquefaction deformation mechanisms of stone column-improved liquefiable sloping ground under cyclic loadings

Yan-Guo Zhou, Dong-Chao Zhang, Kai Liu, Yun-Min Chen

Summary: This study investigated the large deformations caused by liquefaction in sloping ground and the methods for evaluation and mitigation. Soil element tests and centrifuge model tests were conducted to study the relationship between residual strain and Post-liquefaction Deformation Potential (PLDP). The tests showed that the developments of residual strain were controlled by PLDP, which is correlated with the maximum cyclic shear strain. The applicability of PLDP was verified in model tests, and the mitigation mechanisms of densification and drainage induced by stone columns were observed.

SOIL DYNAMICS AND EARTHQUAKE ENGINEERING (2024)

Article Computer Science, Interdisciplinary Applications

Interface formulation for generalized finite difference method for solving groundwater flow

C. Chavez-Negrete, F. J. Dominguez-Mota, R. Roman-Gutierrez

Summary: To accurately simulate groundwater flow in porous layered media, it is important to consider all environmental factors and use a generalized finite differences scheme as a meshless method for spatial discretization. This approach ensures robustness and accuracy of the numerical solution.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Application of improved Picard iteration method to simulate unsaturated flow and deformation in deformable porous media

Shuairun Zhu, Lulu Zhang, Lizhou Wu, Lin Tan, Haolong Chen

Summary: This paper investigates the effectiveness of the cascadic multigrid method applied to the improved Picard iteration method for solving nonlinear problems in deforming variably saturated porous media. Two improved Picard iteration methods are proposed, and their effectiveness is verified through numerical examples. The results show that the improved methods have faster convergence and higher computational efficiency compared to the classical method.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

A study of Hydraulic fracture propagation in laminated shale using extended finite element method

Yinghao Deng, Yang Xia, Di Wang, Yan Jin

Summary: This study investigates the mechanism of hydraulic fracture propagation in laminated shale, develops a numerical solver, and validates the effectiveness of the method through simulation experiments. The study also examines the influence of the interaction between hydraulic fractures and weak interfaces on the mechanical properties of shale.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Influence of particle shape on creep and stress relaxation behaviors of granular materials based on DEM

Deze Yang, Xihua Chu

Summary: Creep and stress relaxation behaviors in granular materials are influenced by the time-dependent changes in their microstructure, with particle shape playing a significant role. However, the effects of particle shape on these behaviors are still not well understood. In this study, 3D DEM models incorporating the rate process theory and superellipsoids are used to simulate creep and stress relaxation in granular samples with different aspect ratios and blockiness. The results show that both aspect ratio and blockiness have a significant influence on creep and stress relaxation, with aspect ratio affecting creep through contact force ratio and blockiness affecting stress relaxation through variation in normal contact force anisotropy. These findings provide insights into the effects of particle shape on creep and stress relaxation in granular assemblies.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Two-phase modelling of erosion and deposition process during overtopping failure of landslide dams using GPU-accelerated ED-SPH

Mingjun Zhou, Zhenming Shi, Chong Peng, Ming Peng, Kahlil Fredrick E. Cui, Bo Li, Limin Zhang, Gordon G. D. Zhou

Summary: In this paper, the erosion and deposition processes during overtopping dam breaching are simulated using a novel method (ED-SPH). The proposed model is able to capture the complex behaviors of dam soil erosion, entrainment, and depositions. Soil deposition hinders particle movement and reduces water velocity at the water-soil interface.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Evaluation of the horizontal cyclic shear stress on the enclosed soil in DSM grid-improved ground by numerical simulation

Yuan Cao, Yan-Guo Zhou, Kyohei Ueda, Yun-Min Chen

Summary: Investigated shear stress responses of enclosed soil in deep soil mixing (DSM) grid-improved ground, and revealed the characteristics of the waist effect and mathematical model for shear stress reduction ratio.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Predicting peak shear strength of rock fractures using tree-based models and convolutional neural network

Jinfan Chen, Zhihong Zhao, Jintong Zhang

Summary: This study develops data-driven criteria to estimate the peak shear strength (PSS) of rock fractures, considering the effects of surface roughness features. A high-quality dataset is created using particle-based discrete element method and diamond-square algorithm. Tree-based models and convolutional neural network are trained to predict the PSS of rock fractures, and their reliability is verified using experimental data.

COMPUTERS AND GEOTECHNICS (2024)

Article Engineering, Geological

Probabilistic assessment of seismic earth pressure against backfills with a nonlinear failure criterion

Rui Zhang, Xiangqian Sheng, Wenliang Fan

Summary: This study introduces a novel approach for the probabilistic assessment of seismic earth pressure against nonlinear backfills. Nonlinear upper bound analysis is used to obtain the seismic earth pressure through optimization procedure, and probability analysis of nonlinear backfill properties is considered by combining adaptive dimension decomposition with the direct integral method.

SOIL DYNAMICS AND EARTHQUAKE ENGINEERING (2024)

Article Computer Science, Interdisciplinary Applications

A thermodynamic constitutive model for structured and destructured clays

Zhichao Zhang, Mingfei Feng, Guangshuo Zhou, Zhenglong Xu

Summary: A thermodynamic constitutive model for structured and destructured clays is proposed in this paper. The model includes state-dependent relations of hyperelasticity and plasticity without the concept of yielding surface. The proposed model captures the couplings between elasticity and plasticity and the effects of bonding structure.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Machine learning approach to predicting the macro-mechanical properties of rock from the meso-mechanical parameters

Zhijun Wu, You Wu, Lei Weng, Mengyi Li, Zhiyang Wang, Zhaofei Chu

Summary: This study proposed a machine learning approach to predict the uniaxial compression strength (UCS) and elastic modulus (E) of rocks. By measuring meso-mechanical parameters and developing grain-based models, a database with 225 groups of data was established for prediction models. The optimized kernel ridge regression (KRR) and gaussian process regression (GPR) models achieved excellent performance in predicting UCS and E.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Discrete Element Modelling of uplift of rigid pipes deeply buried in dense sand

Xin Li, George Kouretzis, Klaus Thoeni

Summary: This paper presents a numerical methodology for efficient modeling of kinematic granular soil-pipe interaction at large deformations using the Discrete Element Method. The methodology is validated through standard tests and blind predictions, providing insights into the reaction and flow-around failure mechanism of deeply buried pipes.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Transfer learning for collapse warning in TBM tunneling using databases in China

Jinhui Li, Dong Guo, Zuyu Chen, Xu Li, Zhaofeng Li

Summary: This study proposes a transfer learning model that uses data from existing tunnels to predict the tunnel boring machine (TBM) responses for a new construction. The study investigates the key problem of transfer learning - what to transfer - based on big data from two projects in China. Results show that the types of transferred TBM parameters significantly affect prediction accuracy, and a filter procedure is proposed to determine the number and types of parameters to be transferred. The proposed model demonstrates superior capability in predicting TBM responses and warning of potential collapses in a new tunnel project.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Peridynamic modeling of step-path failure in rock slopes

Wen Wang, Qi-Zhi Zhu, Jin Zhang, Tao Ni, Stephane P. A. Bordas

Summary: This study investigates the step-path failure of rock slopes using peridynamic theory. An extended bond-based peridynamic model is introduced to distinguish between different fracture phenomena. The fracture processes of gypsum specimens are simulated, and the feasibility of the model is verified by comparing with experiments. The progressive failure of rock slopes is analyzed at the field scale, capturing crack initiation, propagation, coalescence, and structural damage. The predicted crack propagation and coalescence types contribute to understanding step-path failure mechanisms.

COMPUTERS AND GEOTECHNICS (2024)