Engineering, Civil

Article Construction & Building Technology

Experimental and theoretical study on longitudinal deformation and internal force of shield tunnel under surcharge

Zhi Ding, Xiao Zhang, Shao-Heng He, Yong-Jie Qi, Cun-Gang Lin

Summary: This study investigates the longitudinal behavior of a shield tunnel by designing and constructing a reduced-size indoor model. The results show that the longitudinal settlement of the tunnel follows a normal distribution, with the maximum settlement occurring at the central ring and increasing linearly with the applied load. Stress concentration typically occurs on the side of the tunnel waist under surcharge, resulting in transverse elliptical deformation of the entire structure.

TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY (2024)

Article Construction & Building Technology

Pollutant concentration prediction from traffic data analysis for concrete durability studies in Madrid Calle 30 urban tunnels

Lucia Lopez-de-Abajo, Marcos G. Alberti, Jaime C. Galvez

Summary: Assessing and predicting concrete damage is crucial for infrastructure management. This study quantifies gas concentrations in urban tunnels to achieve this goal.

TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY (2024)

Article Construction & Building Technology

Deformation analysis and protection measures of existing metro tunnels effected by river channel excavation in soft soils

Chao He, Yinghao Cai, Chenqiang Pu, Shunhua Zhou, Honggui Di, Xiaohui Zhang

Summary: This paper investigates the impact of river channel excavation on adjacent metro tunnels and proposes protective measures based on an engineering project in Fuzhou, China. A three-dimensional finite element model is developed to calculate the displacements and distortion of tunnels under different excavation sequences and soil reinforcement measures. Real-time monitoring confirms that the vertical displacements and diametrical distortion of tunnels are primarily caused by the excavation of the river above the tunnels, while horizontal displacements are induced by the excavation next to the tunnels. The study recommends a combination of cement slurry with a portal form and concrete with a plate form for soil reinforcement and tunnel protection.

TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY (2024)

Article Engineering, Environmental

Calculation of stress in excavation support structures in seasonal frozen soil areas under temperature effects

Shi-chun Cai, Xiao-hua Yang, Fei Ye

Summary: A calculation method based on the Winkler foundation model is proposed for analyzing the stress and deformation in excavation support structures in seasonally frozen soil regions. The method considers various factors and has been validated to exhibit good applicability.

COLD REGIONS SCIENCE AND TECHNOLOGY (2024)

Article Construction & Building Technology

Contextual multimodal approach for recognizing concurrent activities of equipment in tunnel construction projects

Gilsu Jeong, Minhyuk Jung, Seongeun Park, Moonseo Park, Changbum Ryan Ahn

Summary: This study introduces a contextual audio-visual approach to recognize multi-equipment activities in tunnel construction sites, improving monitoring effectiveness. Tested against real-world operation data, the model achieved remarkable results, emphasizing the potential of contextual multimodal models in enhancing operational efficiency in complex construction sites.

AUTOMATION IN CONSTRUCTION (2024)

Article Engineering, Environmental

Quantifying short-term changes in snow strength due to increasing liquid water content above hydraulic barriers

Mikael Schlumpf, Jordy Hendrikx, John Stormont, Ryan Webb

Summary: The formation of wet-snow slab avalanches is related to the liquid water content and strength of the snow layers. However, current studies disagree on this relationship and there is limited understanding of snow layers with a saturation level of θ=7% and above.

COLD REGIONS SCIENCE AND TECHNOLOGY (2024)

Article Construction & Building Technology

Efficient semi-supervised surface crack segmentation with small datasets based on consistency regularisation and pseudo-labelling

Elyas Asadi Shamsabadi, Seyed Mohammad Hassan Erfani, Chang Xu, Daniel Dias-da-Costa

Summary: Authors acknowledge the support from the University of Sydney.

AUTOMATION IN CONSTRUCTION (2024)

Article Construction & Building Technology

An AI-powered approach to improving tunnel blast performance considering geological conditions

Yaosheng Liu, Ang Li, Feng Dai, Ruochen Jiang, Yi Liu, Rui Chen

Summary: In this study, a hybrid model based on a multilayer perceptron (MLP) and meta-heuristic algorithms was developed to improve blast performance during tunnel excavation. Precise prediction of post-blasting indicators was important for optimization, and a comparison of meta-heuristic algorithms was conducted to find the most suitable model. The results showed that the developed model effectively reduces overbreak areas and quantitatively analyzes the influence of geological conditions.

TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY (2024)

Article Construction & Building Technology

Improved coverage path planning for indoor robots based on BIM and robotic configurations

Zhengyi Chen, Hao Wang, Keyu Chen, Changhao Song, Xiao Zhang, Boyu Wang, Jack C. P. Cheng

Summary: This study proposes an improved coverage path planning system that leverages building information modeling and robotic configurations to optimize coverage performance in indoor environments. Experimental validation shows the effectiveness and applicability of the system. Future research will focus on further enhancing coverage ratio and optimizing computation time.

AUTOMATION IN CONSTRUCTION (2024)

Review Construction & Building Technology

Human-robot collaboration for modular construction manufacturing: Review of academic research

Yonglin Fu, Junjie Chen, Weisheng Lu

Summary: This study presents a review of human-robot collaboration (HRC) in modular construction manufacturing (MCM), focusing on tasks, human roles, and interaction levels. The review found that HRC solutions are applicable to various MCM tasks, with a primary focus on timber component production. It also revealed the diverse collaborative roles humans can play and the varying levels of interaction with robots.

AUTOMATION IN CONSTRUCTION (2024)

Review Construction & Building Technology

Breaking new ground: Opportunities and challenges in tunnel boring machine operations with integrated management systems and artificial intelligence

Jorge Loy-Benitez, Myung Kyu Song, Yo-Hyun Choi, Je-Kyum Lee, Sean Seungwon Lee

Summary: This paper discusses the advancement of tunnel boring machines (TBM) through the application of artificial intelligence. It highlights the significance of AI-based management subsystems for automatic TBM operations and presents recent contributions in this field. The paper evaluates modeling, monitoring, and control subsystems and suggests research paths for integrating existing management subsystems into TBM automation.

AUTOMATION IN CONSTRUCTION (2024)

Article Engineering, Civil

Free vibration of thin, creased elastic plates: Optimization and scaling laws

Avinkrishnan Vijayachandran, Othman Oudghiri-Idrissi, Hrishikesh Danawe, Xiaoming Mao, Ellen Arruda, Serife Tol, Anthony M. Waas

Summary: The study investigates the impact of creasing, crumpling, and folding on the flexural rigidity of thin elastic plates. It introduces an analysis of a structured plate with creases and reveals a significant increase in the fundamental frequency compared to a flat configuration. Scaling laws are also proposed for such structured plates, and an optimization problem is solved to achieve maximum flexural stiffness. The results show promising improvements in stiffness with minimal increase in mass/surface area.

THIN-WALLED STRUCTURES (2024)

Correction Engineering, Civil

A combined periodic acoustic black hole beams with wide vibration attenuation bands (vol 193, 111221, 2023)

Zhiwei Wan, Xiang Zhu, Tianyun Li, Yueyang Han, Wenjie Guo

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

High-fidelity prediction and temperature-rise mechanism for low-velocity impact of triaxially braided composites

Peng Liu, Yinglong Cai, Zhenqiang Zhao, Chao Zhang

Summary: An elastoplastic mechanical-thermal constitutive model was integrated into a mesoscale finite element model to analyze the temperature rise phenomenon and failure behavior of composites under impact loading conditions. The numerical predictions successfully reproduced the observed failure modes and accurately captured the temperature distribution. The study explored the main factors of temperature rise and found that the plastic work of the matrix and the fracture transformed energy of the fiber tow were the primary sources of temperature rise. The transverse specimen exhibited superior energy absorption capacity under high-energy impacts.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Environmental

Data assimilation of PS-InSAR vertical deformation into a frost heave model to analyze subgrade deformation of high-speed railway in northwest China

Guanjun Wei, Chuanjin Lei, Maoning Gao, Hongyu Zhou, Xin Li, Chaoyue Zhang

Summary: This study introduces a novel approach to improve the accuracy of deformation prediction in frozen soil areas by integrating post-processing deformation from InSAR with a frost heave model using the EnKF assimilation algorithm. Experimental results show that this approach reduces the RMSE to 0.247 mm, indicating its high feasibility and practicality.

COLD REGIONS SCIENCE AND TECHNOLOGY (2024)

Article Engineering, Civil

Simulation of SMA-based engineering applications considering large displacement and rotation, thermomechanical coupling and partial phase transformation

Animesh Kundu, Atanu Banerjee

Summary: Shape memory alloys (SMAs) undergo large recoverable deformation due to their phase transformation. This study extends the constitutive model of SMA to consider large displacement and rotation effect and transformation induced material level coupling. The finite element model is solved using the Newton-Raphson iterative technique to solve the mechanical and thermal equilibrium equations. The efficacy and robustness of the model are demonstrated through practical applications of SMA-based members.

THIN-WALLED STRUCTURES (2024)

Article Construction & Building Technology

Lightweight convolutional neural network driven by small data for asphalt pavement crack segmentation

Jia Liang, Qipeng Zhang, Xingyu Gu

Summary: A lightweight PCSNet-based segmentation model is developed to address the issues of insufficient performance in feature extraction and boundary loss information. The introduction of generalized Dice loss improves prediction performance, and the visualization of class activation mapping enhances model interpretability.

AUTOMATION IN CONSTRUCTION (2024)

Article Engineering, Civil

Bending behavior of diamane and twisted bilayer graphene: Insights from four-point bending deformation

Shangchun Jiang, Liangfeng Sun, Haifei Zhan, Zhuoqun Zheng, Xijian Peng, Chaofeng Lue

Summary: This study investigates the bending behavior of two-dimensional nanomaterials, diamane and its analogous structure TBGIB, through atomistic simulations. It reveals that diamane experiences structural failure under bending, while TBGIB bends elastically before undergoing structural failure. The study provides valuable insights for the application of these materials in flexible electronics.

THIN-WALLED STRUCTURES (2024)

Article Engineering, Civil

Graphene/h-BN hybrid van der Waals structures with high strength and flexibility: A nanoindentation investigation

Youzhe Yang, Jun Ma, Jie Yang, Yingyan Zhang

Summary: Two-dimensional nanomaterials like graphene and h-BN have high mechanical strength and thermal conductivity, making them ideal reinforcing fillers for impact protection materials, phase change materials, and thermal interface materials. However, the mechanical properties of graphene/h-BN heterostructures have not been widely explored. This study used molecular dynamics simulations and finite element analysis to investigate the mechanical properties, fracture mechanisms, and manipulation techniques of graphene/h-BN heterostructures. The results show that heterogeneous GBN has excellent performance in resisting bending deformation, and its size-dependent performance can be manipulated through hydrogenation and layer number.

THIN-WALLED STRUCTURES (2024)

Article Construction & Building Technology

Prediction of the slurry pressure and inversion of formation characteristics based on a machine learning algorithm during tunnelling in a fault fracture zone

Xiang Shen, Yifan Chen, Liqiang Cao, Xiangsheng Chen, Yanbin Fu, Chengyu Hong

Summary: In this paper, a machine learning-based method for predicting the slurry pressure in shield tunnel construction is proposed. By considering the influence of fault fracture zones and setting the formation influence coefficient, the accuracy of the prediction is significantly improved.

TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY (2024)