Computer Science, Interdisciplinary Applications

Article Computer Science, Interdisciplinary Applications

Finite discrete element modeling of desiccation fracturing in partially saturated porous medium

Nima Haghighat, Amir Shoarian Sattari, Frank Wuttke

Summary: A numerical framework is proposed for analyzing desiccation fracturing in variably saturated porous media, and its capabilities in capturing unsaturated porous medium flow and coupled hydro-mechanical effects are tested against benchmark solutions. The mechanisms of desiccation cracking in soils are thoroughly investigated.

COMPUTERS AND GEOTECHNICS (2024)

Article Computer Science, Interdisciplinary Applications

Inverse kinematic analysis and agile control of a magnetically actuated catheter

Wenjia Peng, Hongzhi Xie, Shuyang Zhang, Lixu Gu

Summary: This paper presents a magnetic actuation system that uses the rotation of a single permanent magnet to steer an intravascular catheter. The main contribution is the proposal of an inverse kinematic (IK) modeling method that establishes a relationship between the catheter's deflection angle and the rotation angle of the driving magnet (DM). The proposed method effectively estimates the position of the catheter's tip based on the desired deflection angle, achieving a good balance between accuracy and efficiency. The performance of the magnetic actuation system has been evaluated and proven in experiments.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

AAGNet: A graph neural network towards multi-task machining feature recognition

Hongjin Wu, Ruoshan Lei, Yibing Peng, Liang Gao

Summary: Machining feature recognition (MFR) is an important step in computer-aided process planning that infers manufacturing semantics from CAD models. Deep learning methods like AAGNet overcome the limitations of traditional rule-based methods by learning from data and preserving geometric and topological information with a novel representation. AAGNet outperforms other state-of-the-art methods in accuracy and complexity, showing potential as a flexible solution for MFR in CAPP.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

Semantic models and knowledge graphs as manufacturing system reconfiguration enablers

Fan Mo, Jack C. Chaplin, David Sanderson, Giovanna Martinez-Arellano, Svetan Ratchev

Summary: This paper introduces a unified model using semantic modeling to delineate the capabilities, capacity, and reconfiguration potential of the manufacturing sector for efficient system reconfiguration. The paper also presents use cases to validate the proposed model and provides a thorough explanation of the methodology and outcomes.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

Stencil and kernel optimisation for mesh-free very high-order generalised finite difference method

S. Clain, J. Figueiredo

Summary: This study proposes a detailed construction of a very high-order polynomial representation and introduces a functional to assess the quality of the reconstruction. Several optimization techniques are implemented and their advantages in terms of accuracy and stability are demonstrated.

MATHEMATICS AND COMPUTERS IN SIMULATION (2024)

Article Computer Science, Interdisciplinary Applications

A class of unconditionally energy stable relaxation schemes for gradient flows

Gengen Zhang, Jingyu Li, Qiong-Ao Huang

Summary: In this paper, a novel class of unconditionally energy stable schemes are constructed for solving gradient flow models by combining the relaxed scalar auxiliary variable (SAV) approach with the linear multistep technique. The proposed schemes achieve second-order temporal accuracy and strictly unconditional energy stability.

MATHEMATICS AND COMPUTERS IN SIMULATION (2024)

Article Computer Science, Interdisciplinary Applications

A local POE-based self-calibration method using position and distance constraints for collaborative robots

Jianhui He, Lefeng Gu, Guilin Yang, Yiyang Feng, Silu Chen, Zaojun Fang

Summary: This paper presents a new modular kinematic error model for collaborative robots and proposes a portable self-calibration device to improve their positioning accuracy.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

Efficient five-axis scanning-inspection path planning for complex freeform surfaces

Zhaoyu Li, Dong He, Xiangyu Li, Xiaoke Deng, Pengcheng Hu, Jiancheng Hao, Yue Hou, Hongyu Yu, Kai Tang

Summary: This paper presents a novel algorithm for planning a five-axis inspection path for arbitrary freeform surfaces. By converting the inspection path planning problem into a set-covering problem, the algorithm generates a near-minimum set of inspection paths that satisfy necessary constraints. Both computer simulation and physical inspection experiments confirm the effectiveness and advantages of the proposed method.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

A novel method based on deep reinforcement learning for machining process route planning

Hang Zhang, Wenhu Wang, Shusheng Zhang, Yajun Zhang, Jingtao Zhou, Zhen Wang, Bo Huang, Rui Huang

Summary: This paper introduces a novel framework based on deep reinforcement learning for generating machining process routes for designated parts. The framework utilizes graph representations of parts and employs convolutional graph neural networks for effective processing. Experimental results demonstrate the ability of the proposed method to generate efficient machining process routes and overcome limitations of traditional methods.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

Enabling collaborative assembly between humans and robots using a digital twin system

Zequn Zhang, Yuchen Ji, Dunbing Tang, Jie Chen, Changchun Liu

Summary: This paper proposes a digital twin system for human-robot collaboration (HRC) that overcomes the limitations of current methods and improves the overall performance. The system includes a human mesh recovery algorithm and uncertainty estimation to enhance the system's capabilities. Experimental results demonstrate the superiority of the proposed methods over baseline methods. The feasibility and effectiveness of the HRC system are validated through a case study involving component assembly.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

Dynamic collision estimator for collaborative robots: A dynamic Bayesian network with Markov model for highly reliable collision detection

Junmin Park, Taehoon Kim, Chengyan Gu, Yun Kang, Joono Cheong

Summary: This paper proposes a highly reliable and accurate collision estimator for robot manipulators in human-robot collaborative environments using the Bayesian approach. By assuming robot collisions as dynamic Markov processes, the estimator can integrate prior beliefs and measurements to produce current beliefs in a recursive form. The method achieves compelling performance in collision estimation with high accuracy and no false alarms.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

Complex dynamics of a fishery model: Impact of the triple effects of fear, cooperative hunting and intermittent harvesting

Yuan Tian, Huanmeng Li, Kaibiao Sun

Summary: This study proposes a fishery model with dual effects of fear and cooperative hunting based on the cooperative hunting behaviors of predators and the fear response of prey in natural ecosystems. The impact of fear level and cooperative hunting intensity on the dynamics of the model is investigated. Additionally, a state-feedback intermittent fishing strategy is adopted for rational exploitation of fishery resources.

MATHEMATICS AND COMPUTERS IN SIMULATION (2024)

Article Computer Science, Interdisciplinary Applications

Multi-block alternating direction method of multipliers for ultrahigh dimensional quantile fused regression

Xiaofei Wu, Hao Ming, Zhimin Zhang, Zhenyu Cui

Summary: This paper proposes a model that combines quantile regression and fused LASSO penalty, and introduces an iterative algorithm based on ADMM to solve high-dimensional datasets. The paper proves the global convergence and comparable convergence rates of the algorithm, and analyzes the theoretical properties of the model. Numerical experimental results support the superior performance of the model.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

Quadrature-free forms of discontinuous Galerkin methods in solving compressible flows on triangular and tetrahedral grids

Wanai Li

Summary: This paper proposes a new framework that combines quadrature-based and quadrature-free discontinuous Galerkin methods and applies them to triangular and tetrahedral grids. Four different DG schemes are derived by choosing specific test functions and collocation points, improving computational efficiency and ease of code implementation.

MATHEMATICS AND COMPUTERS IN SIMULATION (2024)

Article Computer Science, Interdisciplinary Applications

A novel dimensionality reduction approach by integrating dynamics theory and machine learning

Xiyuan Chen, Qiubao Wang

Summary: This paper introduces a technique that combines dynamical mechanisms and machine learning to reduce dimensionality in high-dimensional complex systems. The method utilizes Hopf bifurcation theory to establish a model paradigm and utilizes machine learning to train location parameters. The effectiveness and robustness of the proposed method are tested and validated through experiments and simulations.

MATHEMATICS AND COMPUTERS IN SIMULATION (2024)

Article Computer Science, Interdisciplinary Applications

Simultaneous confidence region of an embedded one-dimensional curve in multi-dimensional space

Hiroya Yamazoe, Kanta Naito

Summary: This paper focuses on the simultaneous confidence region of a one-dimensional curve embedded in multi-dimensional space. An estimator of the curve is obtained through local linear regression on each variable in multi-dimensional data. A method to construct a simultaneous confidence region based on this estimator is proposed, and theoretical results for the estimator and the region are developed. The effectiveness of the region is demonstrated through simulation studies and applications to artificial and real datasets.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)

Article Computer Science, Interdisciplinary Applications

A general constraint-based programming framework for multi-robot applications

Mario D. Fiore, Felix Allmendinger, Ciro Natale

Summary: This paper presents a constraint-based programming framework for task specification and motion optimization. The framework can handle constraints on robot joint and Cartesian coordinates, as well as time dependency. It also compares with existing methods and provides numerical support through illustrative examples and case studies.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

Learning compliant dynamical system from human demonstrations for stable force control in unknown environments

Dongsheng Ge, Huan Zhao, Yiwei Wang, Dianxi Li, Xiangfei Li, Han Ding

Summary: This paper focuses on learning a stable force control policy from human demonstration during contact transients. Based on the analysis of human demonstration data, a novel human-inspired force control strategy called compliant dynamical system (CDS) is proposed. The effectiveness of the proposed method is validated through simulation and real-world experiments.

ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING (2024)

Article Computer Science, Interdisciplinary Applications

Local stability conditions for a n-dimensional periodic mapping

Rafael Luis, Sandra Mendonca

Summary: This paper determines the necessary and sufficient conditions for the asymptotic stability of periodic cycles for periodic difference equations using Jury's conditions. The conditions are obtained using the Jacobian matrices of the individual maps, avoiding the computation of the Jacobian matrix of the composition operator, which can be a challenging task in higher dimensions. The ideas are illustrated using models in population dynamics and economics game theory.

MATHEMATICS AND COMPUTERS IN SIMULATION (2024)

Article Computer Science, Interdisciplinary Applications

Efficient and robust optimal design for quantile regression based on linear programming

Cheng Peng, Drew P. Kouri, Stan Uryasev

Summary: This paper introduces a novel optimal experimental design method for quantifying the distribution tails of uncertain system responses. The method minimizes the variance or conditional value-at-risk of the upper bound of the predicted quantile, and estimates the data uncertainty using quantile regression. The optimal design problems are solved as linear programming problems, making the proposed methods efficient even for large datasets.

COMPUTATIONAL STATISTICS & DATA ANALYSIS (2024)