Biochemistry & Molecular Biology

Article Biochemistry & Molecular Biology

The cold-induced factor CBF3 mediates root stem cell activity, regeneration, and developmental responses to cold

Pablo Perez-Garcia, Ornella Pucciariello, Alvaro Sanchez-Corrionero, Javier Cabrera, Cristina del Barrio, Juan Carlos del Pozo, Mariano Perales, Krzysztof Wabnik, Miguel A. Moreno-Risueno

Summary: The transcription factor CBF3 plays a crucial role in regulating root development, stem cell activity, and regeneration in response to cold conditions. CBF3 is primarily expressed in the root endodermis and influences the patterning of stem cell niches and root growth. Furthermore, cold-induced CBF3 affects the activity of the quiescent center and promotes root regeneration and quiescent center respecification during the recuperation period.

PLANT COMMUNICATIONS (2024)

Article Biochemistry & Molecular Biology

Viral nanoparticles: Current advances in design and development

Siva Santhiya Arul, Brinda Balakrishnan, Savithri S. Handanahal, Sangita Venkataraman

Summary: Viral nanoparticles are self-assembling delivery systems used for vaccines and therapeutic agents. They have improved biocompatibility and are widely used in various biomedical applications. However, large-scale production of VNPs still faces challenges.

BIOCHIMIE (2024)

Article Biochemistry & Molecular Biology

A disposable immunosensor for the detection of salivary MMP-8 as biomarker of periodontitis

Cristina Tortolini, Valeria Gigli, Antonio Angeloni, Federico Tasca, Nguyen T. K. Thanh, Riccarda Antiochia

Summary: The development of a novel voltammetric immunosensor for the detection of salivary MMP-8 at the point-of-care is described. The sensor showed good performance and comparable results to the conventional ELISA method when tested in real saliva samples. This biosensor is single-use, cost-effective, and requires a small quantity of test medium and a short preparation time.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Facile construction of nanocubic Mn3[Fe(CN)6]2@Pt based electrochemical DNA sensors for ultrafast precise determination of SARS-CoV-2

Mengjiao Zhu, Yu Liu, Meiyue Wang, Tao Liu, Zhenyu Chu, Wanqin Jin

Summary: Early rapid diagnosis of COVID-19 is crucial for reducing the risk of severe symptoms and loss of lung function. Researchers have proposed an ultrafast and ultrasensitive DNA sensor that can accurately detect the virus in a short period of time, with outstanding selectivity.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

A ratiometric molecular imprinted electrochemiluminescence sensor based on enhanced luminescence of CdSe@ZnS quantum dots by MXene@NaAsc for detecting uric acid

Miao Liu, Yuwei Wang, Shanshan Tang, Wei Wang, Axin Liang, Aiqin Luo

Summary: An unlabeled ratiometric molecular imprinted electrochemiluminescence sensor was developed for the determination of trace uric acid using MXene@NaAsc, CdSe@ZnS quantum dots, and molecularly imprinted polymer composites modified glass carbon electrode. This sensor, with easy preparation, great selectivity, and excellent sensitivity, successfully detected uric acid in human serum.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Bacterial eradication by a low-energy pulsed electron beam generator

Charlotte Da Silva, Camille Lamarche, Carole Pichereaux, Emmanuelle Mouton-Barbosa, Gauthier Demol, Sebastien Boisne, Etienne Dague, Odile Burlet-Schiltz, Flavien Pillet, Marie-Pierre Rols

Summary: Low-energy electron beams (LEEB) are a safe and practical sterilization solution for industrial applications. To address the limitations of LEEB, we developed a low-energy pulsed electron beam generator (LEPEB) that can effectively and efficiently eradicate bacteria in a wide range of industrial applications.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Lipid profile in breast cancer: From signaling pathways to treatment strategies

Hennrique Taborda Ribas, Mari C. Sogayar, Amalia M. Dolga, Sheila M. B. Winnischofer, Marina Trombetta-Lima

Summary: Breast cancer, the most prevalent cancer in women, is influenced by lipid metabolism, which varies according to the disease stage and patient's hormone status. The lipid profile of breast tumors can be used to distinguish between different subtypes, and drug resistance is associated with changes in lipid metabolism. Modulating lipid metabolism may have potential for breast cancer treatment in a clinical setting.

BIOCHIMIE (2024)

Article Biochemistry & Molecular Biology

Glycine disrupts myelin, glutamatergic neurotransmission, and redox homeostasis in a neonatal model for non ketotic hyperglycinemia

Belisa Parmeggiani, Marian Flores Signori, Cristiane Cecatto, Marina Rocha Frusciante, Manuela Bianchin Marcuzzo, Debora Guerini Souza, Rafael Teixeira Ribeiro, Bianca Seminotti, Diogo Onofre Gomes de Souza, Cesar Augusto Joa o Ribeiro, Moacir Wajner, Guilhian Leipnitz

Summary: Non ketotic hyperglycinemia (NKH) is a disorder caused by mutations in the genes encoding glycine cleavage system proteins, leading to severe neurodegeneration and white matter alterations. The study found that glycine affects myelin structure, glutamatergic system, and induces oxidative stress in neonatal rats and MO3.13 oligodendroglial cells.

BIOCHIMIE (2024)

Article Biochemistry & Molecular Biology

Polyethylene glycol hydrogel coatings for protection of electroactive bacteria against chemical shocks

Niloufar Fattahi, Jeffrey Reed, Evan Heronemus, Priyasha Fernando, Ryan Hansen, Prathap Parameswaran

Summary: In this study, polyethylene glycol hydrogels were developed as protective coatings for electroactive biofilms, improving their viability under low resource conditions and ammonia-N shocks.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

N-methyl mesoporphyrin IX (NMM) as electrochemical probe for detection of guanine quadruplexes

Daniel Dobrovodsky, Ales Danhel, Daniel Renciuk, Jean-Louis Mergny, Miroslav Fojta

Summary: In this study, N-methyl mesoporphyrin IX (NMM) was utilized as a voltammetric probe for the electrochemical detection of G4s. The detection of NMM was achieved by cyclic voltammetry on a hanging mercury drop electrode (HMDE) with a limit of detection (LOD) of 40 nM. The reduction signal of NMM was found to be significantly higher when G4 oligodeoxynucleotides (G4 ODNs) were present compared to single- or double-stranded ODNs or unfolded ODNs capable of forming G4s. Gradual transition from unstructured single strand to G4, induced by increasing concentrations of the G4 stabilizing K+ ions, was detected for the first time using electrochemical methods. Circular dichroism spectroscopy provided support for the obtained results. This work expands on the utilization of electrochemical probes for DNA secondary structure recognition and offers a proof of principle for the development of novel electroanalytical methods for nucleic acid structure studies.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Electrocatalytic aptasensor for bacterial detection exploiting ferricyanide reduction by methylene blue on mixed PEG/aptamer monolayers

Rimsha B. Jamal, Ulrich Bay Gosewinkel, Elena E. Ferapontova

Summary: Pathogen-triggered infections are a severe global threat to human health. Researchers have developed a fast and inexpensive electrocatalytic aptamer assay for the specific and ultrasensitive detection of E. coli, allowing for timely treatment and prevention. The method is fast, sensitive, and can be used in field and point-of-care applications for analysis of bacteria in the human environment.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Development of bioanodes rich in exoelectrogenic bacteria using iron-rich palaeomarine sediment inoculum

Fatima-Zahra Ait-Itto, James A. Behan, Mathieu Martinez, Frederic Barriere

Summary: This study investigated the feasibility of using ancient marine sediments as inoculum for bioanode development in microbial fuel cells (MFC). The results showed the presence of two exoelectrogenic bacterial genera in these iron-rich sediments and confirmed that the development of the bioanode derived from the native microbiota. This study has important implications for understanding the role of these bacteria in broader paleoenvironmental phenomena.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Paper-based electrodes as a tool for detecting ligninolytic enzymatic activities

Issa Fall, Bastien Doumeche, Sofiene Abdellaoui, Caroline Remond, Harivony Rakotoarivonina, Marjorie Ochs

Summary: This article presents a novel electrochemical tool based on lignin-coated paper electrodes for the detection and characterization of ligninolytic activity. The suitability of this method has been demonstrated using a catalaseperoxidase isolated from Thermobacillus xylanilyticus.

BIOELECTROCHEMISTRY (2024)

Article Biochemistry & Molecular Biology

Dynamic lid domain of Chloroflexus aurantiacus Malonyl-CoA reductase controls the reaction

Burak V. Kabasakal, Charles A. R. Cotton, James W. Murray

Summary: In this study, the crystal structures of both N-terminal and C-terminal regions of Malonyl-Coenzyme A Reductase (MCR) from Chloroflexus aurantiacus were presented, and a catalytic mechanism was proposed. It was found that the C-terminal region of MCR has a lid domain that controls the reaction through conformational changes. Conserved arginines and serines were identified to play key roles in the catalytic mechanism.

BIOCHIMIE (2024)

Review Biochemistry & Molecular Biology

Glucose transporters (GLUTs): Underreported yet crucial molecules in unraveling testicular toxicity

Shirsha Mondal, Arindam Bandyopadhyay

Summary: This review explores the distribution and function of glucose transporters (GLUTs) in different testicular cell types and their significance in male reproductive health. Altered GLUT expression has been linked to testicular dysfunction, and targeting GLUTs may provide innovative strategies for therapeutic interventions. Maintaining testicular glucose homeostasis through manipulating GLUTs is essential for male reproductive health and fertility.

BIOCHIMIE (2024)

Review Biochemistry & Molecular Biology

The emerging functions of mini zinc finger (MIF) microproteins in seed plants: A minireview

Marie Rose Ndella Thiaw, Pascal Gantet

Summary: Mini zinc fingers play important roles in plant development, including control of cell division and expansion, meristem state transition, and growth and organ development. They have diverse modes of action, such as direct gene activation, interaction with specific transcription factors, and aggregation of protein complexes for chromatin remodeling. Further research is needed to explore their wider range of biological functions and their involvement in biotic and abiotic stress responses.

BIOCHIMIE (2024)

Article Biochemistry & Molecular Biology

Characterization of novel truncated apolipoprotein A-I in human high-density lipoprotein generated by sequential treatment with myeloperoxidase and chymase

Shao-Jui Lai, Takahiro Kameda, Maasa Morita, Yuka Yamagata, Kaoruko Nishizaka, Yuna Horiuchi, Yukihiro Kobayashi, Yoko Usami, Jun-Jen Liu, Takeshi Kasama, Minoru Tozuka, Ryunosuke Ohkawa

Summary: In this study, the co-modification and impact of chymase and MPO on HDL were investigated. Sequential treatment with MPO and chymase generated two novel apoA-I fragments from HDL, one of which has a specific immunological property and can be used to predict patients with normal HDL-C levels and cardiovascular diseases.

BIOCHIMIE (2024)

Article Biochemistry & Molecular Biology

At the outer part of the active site in Trypanosoma cruzi glucokinase: The role of phenylalanine 337

Shane M. Carey, Sean P. Kearns, Matthew E. Millington, Gregory S. Buechner, Beda E. Alvarez Jr, Leily Daneshian, Brendan Abiskaroon, Maksymilian Chruszcz, Edward L. D'Antonio

Summary: The importance of F337 in TcGlcK was investigated using the hole mutagenesis approach, revealing its key interactions with aromatic tail groups in inhibitor molecules. Mutants retaining activity and structural similarity were obtained, suggesting the possibility of TcHxK existing as a monomer lacking the F337 residue. Similar D-glucosamine inhibitors may bind less strongly to TcHxK due to the absence of van der Waals contacts from residue side chains.

BIOCHIMIE (2024)

Article Biochemistry & Molecular Biology

Analysis of the function and therapeutic strategy of connexin 43 from its subcellular localization

Xinhai Xiong, Wenjie Chen, Cheng Chen, Qi Wu, Chaopeng He

Summary: This article summarizes the important roles of Cx43 in disease development from the perspective of subcellular localization and provides new ideas for Cx43 as a therapeutic target and the search for related pathological mechanisms.

BIOCHIMIE (2024)

Article Biochemistry & Molecular Biology

Unsaturated fatty acid synthesis in bacteria: Mechanisms and regulation of canonical and remarkably noncanonical pathways

John E. Cronan

Summary: Unsaturated phospholipid acyl chains are essential for membrane function in most bacteria. There are two distinct pathways for the introduction of double bonds in these chains, depending on the oxygen requirement. Both pathways are transcriptionally regulated and influenced by small molecule ligands.

BIOCHIMIE (2024)