4.3 Article

Transient Leakance and Infiltration Characteristics during Lake Bank Filtration

期刊

GROUND WATER
卷 47, 期 1, 页码 57-68

出版社

WILEY
DOI: 10.1111/j.1745-6584.2008.00510.x

关键词

-

资金

  1. KompetenzZentrum Wasser Berlin
  2. Veolia Water
  3. Berlin Water Works

向作者/读者索取更多资源

Infiltration capacity of bank filtration systems depends on water extraction and hydraulic resistance of the bed sediments. Lakebed hydraulics may be especially affected by clogging, which is dependent on settlement of fine particles, redox potential, and other factors. In the field, most of these processes are difficult to quantify, and thus, when calculating response to pumping the water flux across the sediment surface is assumed to be linearly dependent on the hydraulic gradient. However, this assumption was not adequate to describe conditions at a bank filtration site located at Lake Tegel, Berlin, Germany. Hence, we first assumed the leakage coefficient (or leakance) is spatially distributed and also temporally variant. Furthermore, observations show that the leakance is considerably higher in shallow than in deeper areas; hence, leakance was assumed to be dependent on the existence and thickness of an unsaturated zone below the lake. The proposed explanation of spatial and temporal variability in leakance involves a hypothesis for redox dependent and reversible biogeochemical clogging, supported by geochemical observations in surface water and ground water. Four leakance approaches are implemented in the ground water flow code MODFLOW2000 and calibrated by inverse modeling using the parameter estimation software PEST. These concepts are evaluated by examining the fit to the hydraulic heads, to infiltration measurements, transport modeling results, and considering the degrees of freedom due to the number of calibration parameters. The leakage concept based on the assumption of the influence of an unsaturated zone on clogging processes best explains the field data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据