4.8 Article

A continuous process for glyoxal valorisation using tailored Lewis-acid zeolite catalysts

期刊

GREEN CHEMISTRY
卷 16, 期 3, 页码 1176-1186

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3gc42353k

关键词

-

资金

  1. Swiss National Science Foundation [200021-140496]
  2. Swiss National Science Foundation (SNF) [200021_140496] Funding Source: Swiss National Science Foundation (SNF)

向作者/读者索取更多资源

The aqueous-phase heterogeneously catalysed isomerisation of bio-oil derived glyoxal is herein introduced as a novel route for the sustainable production of glycolic acid. While commercial ultra-stable Y zeolites displayed only moderate performance, their evaluation enabled us to highlight the crucial role of Lewis acidity in the reaction. Gallium incorporation into these zeolites boosted the glycolic acid yield, although the best catalytic results were obtained over tin-containing MFI-type zeolites, reaching 91% yield of the desired product at full conversion. These materials comprised hydrothermally-synthesised Sn-MFI as well as a novel catalyst obtained by the introduction of tin into silicalite-1 by means of a simpler and more scalable method, i.e. alkaline-assisted metallation. In-depth spectroscopic characterisation of these systems uncovered a substantial similarity of the tin centres obtained by the top-down and bottom-up synthetic approaches. NMR spectroscopic studies gave evidence that the reaction follows a 1,2-hydride shift mechanism solely catalysed by Lewis-acid sites. The Sn-MFI analogue could be reused in 5 cycles without the need for intermediate calcination, did not evidence any tin leaching, and demonstrated suitability for utilisation under continuous-flow operation. The tin-based zeolites exhibited remarkable performance also in alcoholic solvents, leading to the one-pot production of relevant alkyl glycolates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据