4.8 Article

Controlling C-O, C-C and C-H bond scission for deoxygenation, reforming, and dehydrogenation of ethanol using metal-modified molybdenum carbide surfaces

期刊

GREEN CHEMISTRY
卷 16, 期 2, 页码 777-784

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3gc41259h

关键词

-

资金

  1. US Department of Energy [DE-FG02-13ER16381]

向作者/读者索取更多资源

For biomass-derived oxygenate molecules to be fully utilized for chemicals and fuels, control of the bond scission sequence is necessary. Particularly, the C-O, C-H, and C-C bonds must be selectively broken to produce hydrocarbons, aldehydes, and syngas, respectively. Molybdenum carbide (Mo2C) and metal-modified Mo2C may be used to tune the selectivity towards different bond scission pathways. We have investigated how the admetal modification of Mo2C can shift the selectivity towards breaking certain bonds, using ethanol as a probe molecule. Density functional theory (DFT) was used to predict the binding energies of ethanol and reaction intermediates on the Mo2C surfaces. Ultrahigh vacuum (UHV) techniques such as temperature programmed desorption (TPD) and high-resolution electron energy toss spectroscopy (HREELS) were used to verify the activity and reaction pathways on Mo2C and metal-modified Mo2C surfaces. It was seen that the bare Mo2C surface was active for C-O cleavage to produce ethylene. Surface modification with Ni resulted in the preferential C-C bond scission to form syngas, while modification by Cu led to the C-H scission to produce acetaldehyde.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据