4.8 Article

Catalytic transesterification of cellulose in ionic liquids: sustainable access to cellulose esters

期刊

GREEN CHEMISTRY
卷 16, 期 6, 页码 3266-3271

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4gc00312h

关键词

-

向作者/读者索取更多资源

Catalytic transesterifications of cellulose were studied under homogeneous conditions using the ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) as a solvent. Cellulose was thus efficiently converted into cellulose esters employing various methyl esters and 10 mol% of 1,5,7-triazabicyclo[4.4.0] dec-5-ene (TBD) as catalyst. H-1 NMR analysis of the products revealed up to 2.3 turnovers of the methyl esters per catalyst molecule, leading to degrees of substitution (DS) of up to 0.69. Although a comparatively low turnover number (TON) is observed, the developed methodology represents the first successful homogeneous catalytic reaction on cellulose. Furthermore, the new method is an important step forward in terms of sustainability, since the BMIMCl-DMSO mixture can be recycled and reused for the reaction, and toxic and corrosive chemicals commonly employed for cellulose esterification (such as anhydrides, acid chlorides and bromides, organic bases, all in overstoichiometric amounts) are avoided. To demonstrate the versatility of this transesterification, an aromatic (cellulose benzoate), an aliphatic (cellulose butyrate), and a fatty acid containing cellulose ester (cellulose 10-undecenoate) were prepared. Additionally, cellulose 10-undecenoate was successfully used for thiol-ene grafting onto reactions employing two thiols for efficient thiol-ene addition reactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据