4.8 Article

Microwave-assisted conversion of carbohydrates to levulinic acid: an essential step in biomass conversion

期刊

GREEN CHEMISTRY
卷 15, 期 2, 页码 439-445

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2gc36682g

关键词

-

资金

  1. Hungarian Scientific Research Fund [OTKA-CNK 78065]
  2. European Union
  3. European Social Fund [TAMOP 4.2.1./B-09/KMR-2010-0003]

向作者/读者索取更多资源

Degradation of non-edible carbohydrates to levulinic acid (4-oxopentanoic acid) was studied by using dielectric heating with microwave energy. Levulinic acid and its reduced and dehydrated derivative, gamma-valerolactone (GVL), can be used for the production of small-molecule, functionalized hydrocarbons, which might be potential platform molecules for the chemical industry. First, simple model compounds (fructose, glucose, saccharose and cellobiose) were hydrolyzed in order to find the optimum reaction conditions (e. g. reagent, reaction temperature, acid concentration, time) for the degradation and transformation of polysaccharides (cellulose, chitin, chitosan) by using controlled microwave irradiation. Cellulose, a non-edible biopolymer of plant origin, was successfully converted to levulinic acid under the optimized conditions (2 M H2SO4, 170 degrees C, 50 min) with a yield of 34.2% in a mono-mode Multisynth microwave reactor. The reactions proceeded with hydrochloric acid catalysis as well, and a slightly better yield was achieved, however, using HCl (a chlorine containing catalyst) raises serious environmental concerns. The hydrolysis of glucosamine-based glycans (D-glucosamine, N-Ac-D-glucosamine, LMw-chitosan, MMw-chitosan, chitin) was also studied and optimized with sulfuric acid as a catalyst in a mono-mode Multisynth microwave reactor. The highest yield of levulinic acid was obtained with 2 M H2SO4 at 190 degrees C for 30 min. N-Ac-D-glucosamine, D-glucosamine, LMw-chitosan and MMw-chitosan resulted in levulinic acid with yields between 20.6% and 32.7%, the larger molecular weight chitin was degraded to levulinic acid with a yield of 37.8%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据