4.8 Article

Substrate imprinted lipase nanogel for one-step synthesis of chloramphenicol palmitate

期刊

GREEN CHEMISTRY
卷 15, 期 5, 页码 1155-1158

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3gc40465j

关键词

-

资金

  1. National Natural Science Foundation of China [21206082, 21036003]

向作者/读者索取更多资源

Enzymatic catalysis with high enantio-and regio-selectivity, which is attractive for green synthesis of chemicals, often suffers from low activity in organic solvents utilized as reaction media. Here, we describe a 'substrate-imprinted' lipase nanogel that displays high activity in organic solvents. The first step was to encapsulate lipase into polyacrylamide nanogel by an aqueous in situ polymerization. Then the lipase nanogel was lyophilized in the presence of palmitic acid, a substrate of lipase, followed by extraction with petroleum ether to remove palmitic acid from the lyophilized lipase nanogel. The imprinting treatment increased the adsorption capacity of palmitic acid by 2.9-fold and the apparent activity by 2-fold in catalyzing the transesterification reaction between para-nitrophenyl palmitate and ethanol. The effects of solvent and temperature on the yield and selectivity of the enzymatic synthesis of chloramphenicol palmitate were examined, respectively. One-step synthesis of chloramphenicol palmitate with the imprinted lipase nanogel gave a yield of similar to 99% and a purity of similar to 99% within 12 hours at 20 degrees C, whereas the imprinted free lipase gave a yield below 60% in 20 hours. The high activity and selectivity make the substrate-imprinted enzyme nanogel an attractive catalyst for green synthesis of chemicals having complex structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据