4.8 Article

Seawater-based furfural production via corncob hydrolysis catalyzed by FeCl3 in acetic acid steam

期刊

GREEN CHEMISTRY
卷 15, 期 3, 页码 727-737

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2gc36346a

关键词

-

资金

  1. National Natural Science Foundation of China (NSFC) [51006018]
  2. National Water Pollution Control and Management Technology Major Projects [2012ZX07202003-004]
  3. Special Fund of Environmental Protection Research for Public Welfare of China [201109035]

向作者/读者索取更多资源

Challenges including low furfural yield, high energy and fresh water consumption and a high level of pollution have blocked the development of the furfural industry for decades. In this study, a seawater-based furfural process integrated with wastewater recycling was proposed. In this process, acetic acid steam and FeCl3 were used as environmentally friendly catalysts instead of mineral acids. In order to provide supporting data for acetic acid steam-catalyzed furfural production, data on the vapor/liquid components of the water + acetic acid system were experimentally determined. In addition, the effects of acetic acid steam, seawater or/and FeCl3 on corncob hydrolysis were systematically investigated. The results indicated that coexistence of three components resulted in a remarkable increase in furfural yield and delignification efficiency. Maximum furfural yields of 72.93% and 79.53% of lignin removal were obtained at 190 degrees C in the presence of 60 mM FeCl3 and concentrated seawater (10x) in acetic acid steam. Another special focus was put on exploring the feasibility of reutilizing the furfural wastewater as a steam and acetic acid source. The results showed that comparable furfural yield and lignin removal were obtained when furfural wastewater was used instead of pure acetic acid steam. The seawater-based furfural production integrated with wastewater recycling provides a green and environmentally friendly approach to the furfural or other bio-chemicals industry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据