4.8 Article

The fate of bio-carbon in FCC co-processing products

期刊

GREEN CHEMISTRY
卷 14, 期 5, 页码 1367-1371

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c2gc35152h

关键词

-

资金

  1. BIOCOUP [518312]
  2. ACENET (HECABIO)

向作者/读者索取更多资源

A promising alternative to the first generation of bio-fuels is to produce mixed bio- and fossil fuels by co-processing mixtures of biomass pyrolysis oil with crude oil fractions obtained from distillation in a conventional oil refinery. This was demonstrated to be technically feasible for fluid catalytic cracking (FCC), which is the main refinery process for producing gasoline. However, co-processing leads to more coke formation and to a more aromatic gasoline fraction. A detailed understanding is necessary on how the oxygenated moieties effect the reaction mechanism to further improve the process/catalysts. Moreover, for technical and marketing reasons, it is absolutely required to accurately determine the proportion of renewable molecules in the commercialized products. The carbon-14 method (also called radiocarbon or C-14) has been used as the most accurate and powerful method to discriminate fossil carbon from bio-carbon, since fossil fuel is virtually C-14-free, while biofuel contains the present-day natural amount of C-14. This technique has shown that not all FCC products share bio-carbon statistically. The coke formed during a FCC cycle and to a lesser extent the gases are found richer in C-14 than gasoline. This result gives valuable information on the co-processing mechanism, supporting that the bio-oil oxygenated molecules are processed more easily at the expenses of the crude oil hydrocarbons, favouring the bio-coke and the bio-light gases production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据