4.8 Article

Pyrolysis oils from CO2 precipitated Kraft lignin

期刊

GREEN CHEMISTRY
卷 13, 期 11, 页码 3196-3202

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c1gc15818j

关键词

-

资金

  1. PSE (Paper Science and Engineering) program at Georgia Tech
  2. Southern Pine Based Biorefinery Centre (DOE) [DE-EE0003144]
  3. Fulbright

向作者/读者索取更多资源

A common goal in present and future forestry, biofuels and biomaterials practices, is the need to valorize lignocellulose processes to maximize value and optimize autonomic economy. Consequently, a key focus of modern biorefining is the on-site utilization of all residual materials generating products of the highest possible value. The LignoBoost process, recently demonstrated on the pilot-scale at Kraft pulp mills, injects CO2 into pulping liquors which results in a lower solution pH and thereby precipitates lignin. The present paper compares and evaluates the pyrolysis of pulping liquor lignins precipitated by sulfuric acid (pH 3) and the aforementioned CO2 method (pH 10.5 and 9.5). The CO2 based process yielded lignin that showed superior pyrolysis properties including low gas formation and increased bio-oil yields, close to 40%, consisting primarily of low (similar to 150 g mol(-1)) molecular weight compounds. Subsequent NMR analysis showed that the oils exhibit favorable changes in functionalities, e. g. loss of aromatic and gain in aliphatic carbon percentages as well as decrease in carboxyl and methoxyl (oxygen containing) groups. Moreover, NMR results further confirmed previously hypothesized lignin pyrolysis reactions, while at the same time showed the potential of CO2 precipitated lignin for pyrolysis and subsequent liquid biofuel production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据