4.8 Article

Primary biodegradation of ionic liquid cations, identification of degradation products of 1-methyl-3-octylimidazolium chloride and electrochemical wastewater treatment of poorly biodegradable compounds

期刊

GREEN CHEMISTRY
卷 10, 期 2, 页码 214-224

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b713095c

关键词

-

向作者/读者索取更多资源

We investigated the primary biodegradation of different N-imidazoles, imidazolium, pyridinium and 4-(dimethylamino)pyridinium compounds substituted with various alkyl side chains and their analogues containing functional groups principally based on OECD guideline 301 D. For the experiments we used two different types of inocula, a freeze-dried mix of bacteria and activated sludge microorganisms from a wastewater treatment plant. The aim of this study was to improve the knowledge base for the structural design of ionic liquids with respect to an increased biodegradability combined with a reduced (eco) toxicological hazard potential. We found a significant primary biodegradation for (eco)toxicologically unfavourable compounds carrying long alkyl side chains (C6 and C8). In contrast for (eco) toxicologically more recommendable imidazolium ionic liquids with short alkyl (<= C6) and short functionalised side chains, no biological degradation could be found. The introduction of different functional groups into the side chain moiety thus offering a higher chemical reactivity did not lead to the expected improvement of the biological degradation. After an incubation period of 24 days for the 1-methyl-3-octylimidazolium cation we identified different biological transformation products carrying hydroxyl, carbonyl and carboxyl groups. Furthermore, shortened side chain moieties were identified indicating the degradation of the octyl side chain via beta-oxidation. Moreover, we propose an electrochemical wastewater treatment as part of an alternative disposal strategy for non-biodegradable ionic liquids. We show for the first time that the 1-butyl-3-methylimidazolium cation was completely destroyed within four hours using an electrolysis double-cell (volume = 1.2 L) equipped with electrodes made of iridium oxide (anode), stainless steel (cathode), and a boron-doped diamond-coated bipolar electrode. The products formed electrochemically were easily accessible to biological degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据