4.5 Article

Instantaneous re-initialization in real-time kinematic PPP with cycle slip fixing

期刊

GPS SOLUTIONS
卷 16, 期 3, 页码 315-327

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10291-011-0233-9

关键词

Precise point positioning; Real-time kinematic; Instantaneous re-initialization; Undifferenced; Cycle slip fixing; LAMBDA

资金

  1. China National Natural Science Foundation of China [40874017, 41074024]

向作者/读者索取更多资源

The network-based real-time kinematic (RTK) positioning has been widely used for high-accuracy applications. However, the precise point positioning (PPP) technique can also achieve centimeter to decimeter kinematic positioning accuracy without restriction of inter-station distances but is not as popular as network RTK for real-time engineering applications. Typically, PPP requires a long initialization time and continuous satellite signals to maintain the high accuracy. In case of phase breaks or loss of signals, re-initialization is usually required. An approach of instantaneous cycle slips fixing using undifferenced carrier phase measurements is proposed, which leads to instantaneous re-initialization for real-time PPP. In the proposed approach, various errors such as real-time orbit and clock errors, atmosphere delay and wind-up effects are first refined and isolated from integer cycle slips. The integer values of cycle slips can then be estimated and fixed with the LAMBDA technique by applying a cascade cycle slip resolution strategy. Numerical experiments with different user dynamics are carried out to allow a comprehensive evaluation of efficiency and robustness of the cycle slip fixing algorithm. The results show that the cycle slips can be fixed correctly in all cases considered and that data gaps of up to 300 s can be connected with high confidence. As a result, instantaneous re-initialization is achieved in the real-time PPP processing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据