4.4 Article

EDEM1 accelerates the trimming of α1,2-linked mannose on the C branch of N-glycans

期刊

GLYCOBIOLOGY
卷 20, 期 5, 页码 567-575

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/glycob/cwq001

关键词

EDEM (ER degradation enhancing alpha-mannosidase-like protein); ERAD (ER-associated degradation); glycoprotein; mannose trimming; N-linked glycan

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. Hayashi Memorial Foundation for Female Natural Scientists
  3. Canadian Institutes of Health Research
  4. Grants-in-Aid for Scientific Research [22570183] Funding Source: KAKEN

向作者/读者索取更多资源

Glycoprotein folding and degradation in the endoplasmic reticulum (ER) is mediated by the ER quality control system. Mannose trimming plays an important role by forming specific N-glycans that permit the recognition and sorting of terminally misfolded conformers for ERAD (ER-associated degradation). The EDEM (ER degradation enhancing alpha-mannosidase-like protein) subgroup of proteins belonging to the Class I alpha 1,2-mannosidase family (glycosylhydrolase family 47) has been shown to enhance ERAD. We recently reported that overexpression of EDEM3 enhances glycoprotein ERAD with a concomitant increase in mannose-trimming activity in vivo. Herein, we report that overexpression of EDEM1 produces Glc(1)Man(8)GlcNAc(2) isomer C on terminally misfolded null Hong Kong alpha 1-antitrypsin (NHK) in vivo. Levels of this isomer increased throughout the chase period and comprised approximately 10% of the [(3)H]mannose-labeled N-glycans on NHK after a 3-h chase. Furthermore, overexpression of EDEM1 E220Q containing a mutation in a conserved catalytic residue essential for alpha 1,2-mannosidase activity did not yield detectable levels of Glc(1)Man(8)GlcNAc(2) isomer C. Yet, the same extent of NHK ERAD-enhancement was observed in both EDEM1 and EDEM1 E220Q overexpressing cells. This can be attributed to both wild-type and mutant EDEM1 inhibiting aberrant NHK dimer formation. We further analyzed the N-glycan profile of total cellular glycoproteins from HepG2 cells stably overexpressing EDEM1 and found that the relative amount of Man(7)GlcNAc(2) isomer A, which lacks the terminal B and C branch mannoses, was increased compared to parental HepG2 cells. Based on this observation, we conclude that EDEM1 activity trims mannose from the C branch of N-glycans in vivo.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据