4.4 Article

Structural determination by negative-ion MALDI-QIT-TOFMSn after pyrene derivatization of variously fucosylated oligosaccharides with branched decaose cores from human milk

期刊

GLYCOBIOLOGY
卷 19, 期 6, 页码 601-614

出版社

OXFORD UNIV PRESS INC
DOI: 10.1093/glycob/cwp026

关键词

fucosylated oligosaccharides; human milk oligosccharides; MALDI-MSn; negative ion; pyrene-labeling

资金

  1. New Energy Development Organization of Japan

向作者/读者索取更多资源

We prepared neutral oligosaccharide fraction from milk of a woman (blood type A, Le(b+)) by anion-exchange column chromatography after the removal of lipids and proteins. Further fractionation was performed by means of Aleuria aurantia lectin-Sepharose column chromatography and reverse-phase HPLC after labeling with a pyrene derivative. This pyrene labeling allowed identification by negative-MALDI-TOFMSn analysis of 22 oligosaccharides with decaose cores, among which 21 had novel structures. Negative ions could not be produced from neutral oligosaccharides without labeling on MALDI. Mono-, di-, tri-, and tetrafucosylated decaose fractions contained three, nine, six, and four isomers, respectively. Our method enables easy determination of fucosylated structures on the N-acetyllactosamine branches of these isomers. On negative-MSn the fragment ions included several A and D ions, from which fucosylation on the branches could be elucidated. Other characteristic ions were also detected. Y-type cleavage at the reducing side of -3GlcNAc indicated the occurrence of type 1 chain. Specific fragment ions were produced from H, Le(a), and Le(x) antigens. Linkage-specific exoglycosidase digestion confirmed the structures. The results indicate that the diversity of the oligosaccharides is due to combinations of type 1 H, Le(a), Le(x), and Le(b)/Le(y) on branched decaose cores. In typical oligosaccharides, 6-branches always consist of type 2 chain, while 3-branches, such as beta and gamma chains, are fucosylated type 1 chains. From the viewpoint of biosynthesis, the presence of fucosylation and type 1 chain may halt elongation of the N-acetyllactosamine and promote formation of branched structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据