4.8 Review

Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2

期刊

GLOBAL CHANGE BIOLOGY
卷 19, 期 1, 页码 45-63

出版社

WILEY
DOI: 10.1111/j.1365-2486.2012.02797.x

关键词

acclimation; carbon cycling; climate change; CO2; ESM; nutrient limitation; photosynthesis; Q(10); respiration; temperature

资金

  1. National Science Foundation (NSF) [DEB-0955771, DEB-0546670, DEB-1145993]
  2. US Department of Energy's Office of Science (BER), through the Northeastern Regional Center of the National Institute for Climatic Change Research
  3. Direct For Biological Sciences [0955771] Funding Source: National Science Foundation

向作者/读者索取更多资源

To realistically simulate climate feedbacks from the land surface to the atmosphere, models must replicate the responses of plants to environmental changes. Several processes, operating at various scales, cause the responses of photosynthesis and plant respiration to temperature and CO2 to change over time of exposure to new or changing environmental conditions. Here, we review the latest empirical evidence that short-term responses of plant carbon exchange rates to temperature and CO2 are modified by plant photosynthetic and respiratory acclimation as well as biogeochemical feedbacks. We assess the frequency with which these responses have been incorporated into vegetation models, and highlight recently designed algorithms that can facilitate their incorporation. Few models currently include representations of the long-term plant responses that have been recorded by empirical studies, likely because these responses are still poorly understood at scales relevant for models. Studies show that, at a regional scale, simulated carbon flux between the atmosphere and vegetation can dramatically differ between versions of models that do and do not include acclimation. However, the realism of these results is difficult to evaluate, as algorithm development is still in an early stage, and a limited number of data are available. We provide a series of recommendations that suggest how a combination of empirical and modeling studies can produce mechanistic algorithms that will realistically simulate longer term responses within global-scale models.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据