4.8 Article

Sea anemones may thrive in a high CO2 world

期刊

GLOBAL CHANGE BIOLOGY
卷 18, 期 10, 页码 3015-3025

出版社

WILEY
DOI: 10.1111/j.1365-2486.2012.02767.x

关键词

Cnidarian; CO2 vent; Ocean acidification; Productivity; Sea anemone; Symbiodinium spp

资金

  1. EU [265103]
  2. UK Ocean Acidification Research Programme (NERC)
  3. NERC [NE/G020116/1]
  4. Save Our Seas Foundation
  5. National Science Foundation [1040940]
  6. Earls Colne and Halstead Educational Charity
  7. Direct For Biological Sciences
  8. Emerging Frontiers [1040940] Funding Source: National Science Foundation
  9. Natural Environment Research Council [NE/G020116/1] Funding Source: researchfish
  10. NERC [NE/G020116/1] Funding Source: UKRI

向作者/读者索取更多资源

Increased seawater pCO(2), and in turn ocean acidification (OA), is predicted to profoundly impact marine ecosystem diversity and function this century. Much research has already focussed on calcifying reef-forming corals (Class: Anthozoa) that appear particularly susceptible to OA via reduced net calcification. However, here we show that OA-like conditions can simultaneously enhance the ecological success of non-calcifying anthozoans, which not only play key ecological and biogeochemical roles in present day benthic ecosystems but also represent a model organism should calcifying anthozoans exist as less calcified (soft-bodied) forms in future oceans. Increased growth (abundance and size) of the sea anemone (Anemonia viridis) population was observed along a natural CO2 gradient at Vulcano, Italy. Both gross photosynthesis (PG) and respiration (R) increased with pCO(2) indicating that the increased growth was, at least in part, fuelled by bottom up (CO2 stimulation) of metabolism. The increase of PG outweighed that of R and the genetic identity of the symbiotic microalgae (Symbiodinium spp.) remained unchanged (type A19) suggesting proximity to the vent site relieved CO2 limitation of the anemones' symbiotic microalgal population. Our observations of enhanced productivity with pCO(2), which are consistent with previous reports for some calcifying corals, convey an increase in fitness that may enable non-calcifying anthozoans to thrive in future environments, i.e. higher seawater pCO(2). Understanding how CO2-enhanced productivity of non- (and less-) calcifying anthozoans applies more widely to tropical ecosystems is a priority where such organisms can dominate benthic ecosystems, in particular following localized anthropogenic stress.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据