4.8 Review

Responses of terrestrial ecosystems to temperature and precipitation change: a meta-analysis of experimental manipulation

期刊

GLOBAL CHANGE BIOLOGY
卷 17, 期 2, 页码 927-942

出版社

WILEY
DOI: 10.1111/j.1365-2486.2010.02302.x

关键词

ecosystem photosynthesis; meta-analysis; net ecosystem exchange; plant biomass; plant productivity; precipitation; respiration; warming

资金

  1. National Institute of Climatic Change Research
  2. US National Science Foundation [DEB-0092642]
  3. government of Catalunya [AGAUR 2005PIV00123, SGR2009-458]
  4. Spanish Government [CGL2006-04025/BOS, CSD2008- 00040]
  5. Science Foundation Arizona [GRF 0001-07]
  6. Direct For Biological Sciences
  7. Division Of Environmental Biology [0918617] Funding Source: National Science Foundation
  8. Direct For Biological Sciences
  9. Division Of Environmental Biology [0949460] Funding Source: National Science Foundation
  10. Direct For Biological Sciences
  11. Div Of Biological Infrastructure [0934398] Funding Source: National Science Foundation

向作者/读者索取更多资源

Global mean temperature is predicted to increase by 2-7 degrees C and precipitation to change across the globe by the end of this century. To quantify climate effects on ecosystem processes, a number of climate change experiments have been established around the world in various ecosystems. Despite these efforts, general responses of terrestrial ecosystems to changes in temperature and precipitation, and especially to their combined effects, remain unclear. We used meta-analysis to synthesize ecosystem-level responses to warming, altered precipitation, and their combination. We focused on plant growth and ecosystem carbon (C) balance, including biomass, net primary production (NPP), respiration, net ecosystem exchange (NEE), and ecosystem photosynthesis, synthesizing results from 85 studies. We found that experimental warming and increased precipitation generally stimulated plant growth and ecosystem C fluxes, whereas decreased precipitation had the opposite effects. For example, warming significantly stimulated total NPP, increased ecosystem photosynthesis, and ecosystem respiration. Experimentally reduced precipitation suppressed aboveground NPP (ANPP) and NEE, whereas supplemental precipitation enhanced ANPP and NEE. Plant productivity and ecosystem C fluxes generally showed higher sensitivities to increased precipitation than to decreased precipitation. Interactive effects of warming and altered precipitation tended to be smaller than expected from additive, single-factor effects, though low statistical power limits the strength of these conclusions. New experiments with combined temperature and precipitation manipulations are needed to conclusively determine the importance of temperature-precipitation interactions on the C balance of terrestrial ecosystems under future climate conditions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据