4.8 Article

Methane and soil CO2 production from current-season photosynthates in a rice paddy exposed to elevated CO2 concentration and soil temperature

期刊

GLOBAL CHANGE BIOLOGY
卷 17, 期 11, 页码 3327-3337

出版社

WILEY
DOI: 10.1111/j.1365-2486.2011.02475.x

关键词

C-source separation; free-air CO2 enrichment; global warming; methane; positive feedback; rhizodeposition; rice paddy; delta C-13

资金

  1. Ministry of the Environment, Japan
  2. Japan Society for the Promotion of Science [PD 19-7010]

向作者/读者索取更多资源

Quantification of rhizodeposition (root exudates and root turnover) represents a major challenge for understanding the links between above-ground assimilation and below-ground anoxic decomposition of organic carbon in rice paddy ecosystems. Free-air CO2 enrichment (FACE) fumigating depleted (CO2)-C-13 in rice paddy resulted in a smaller C-13/C-12 ratio in plant-assimilated carbon, providing a unique measure by which we partitioned the sources of decomposed gases (CO2 and CH4) into current-season photosynthates (new C) and soil organic matter (old C). In addition, we imposed a soil-warming treatment nested within the CO2 treatments to assess whether the carbon source was sensitive to warming. Compared with the ambient CO2 treatment, the FACE treatment decreased the C-13/C-12 ratio not only in the rice-plant carbon but also in the soil CO2 and CH4. The estimated new C contribution to dissolved CO2 was minor (ca. 20%) at the tillering stage, increased with rice growth and was about 50% from the panicle-formation stage onwards. For CH4, the contribution of new C was greater than for heterotrophic CO2 production; ca. 40-60% of season-total CH4 production originated from new C with a tendency toward even larger new C contribution with soil warming, presumably because enhanced root decay provided substrates for greater CH4 production. The results suggest a fast and close coupling between photosynthesis and anoxic decomposition in soil, and further indicate a positive feedback of global warming by enhanced CH4 emission through greater rhizodeposition.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据