4.8 Article

Climate change effects on walnut pests in California

期刊

GLOBAL CHANGE BIOLOGY
卷 17, 期 1, 页码 228-238

出版社

WILEY-BLACKWELL PUBLISHING, INC
DOI: 10.1111/j.1365-2486.2010.02227.x

关键词

climate change; codling moth; degree-day models; European red mite; fruits and nuts; Juglans regia L; navel orangeworm; two-spotted spider mite

资金

  1. California Department of Food and Agriculture [SCI07008]

向作者/读者索取更多资源

Increasing temperatures are likely to impact ectothermic pests of fruits and nuts. This paper aims to assess changes to pest pressure in California's US$0.7 billion walnut industry due to recent historic and projected future temperature changes. For two past (1950 and 2000) and 18 future climate scenarios (2041-2060 and 2080-2099; each for three General Circulation Models and three greenhouse gas emissions scenarios), 100 years of hourly temperature were generated for 205 locations. Degree-day models were used to project mean generation numbers for codling moth (Cydia pomonella L.), navel orangeworm (Amyelois transitella Walker), two-spotted spider mite (Tetranychus urticae Koch), and European red mite (Panonychus ulmi Koch). In the Central Valley, the number of codling moth generations predicted for degree days accumulated between April 1 and October 1 rose from 2-4 in 1950 to 3-5 among all future scenarios. Generation numbers increased from 10-18 to 14-24 for two-spotted spider mite, from 9-14 to 14-20 for European red mite, and from 2-4 to up to 5 for navel orangeworm. Overall pest pressure can thus be expected to increase substantially. Our study did not include the possibility of higher winter survival rates, leading to higher initial pest counts in spring, or of extended pest development times in the summer, factors that are likely to exacerbate future pest pressure. On the other hand, initiation of diapause may prevent an extension of the season length for arthropods, and higher incidence of heat death in summer may constrain pest population sizes. More information on the impact of climate change on complex agroecological food webs and on the response of pests to high temperatures is needed for improving the reliability of projections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据