4.8 Article

Effects of climate-driven primary production change on marine food webs: implications for fisheries and conservation

期刊

GLOBAL CHANGE BIOLOGY
卷 16, 期 4, 页码 1194-1212

出版社

WILEY
DOI: 10.1111/j.1365-2486.2009.02046.x

关键词

climate change; ecological interactions; fisheries; food web model; marine biodiversity

资金

  1. Australian Research Council [DP0879365]
  2. University of Queensland
  3. CSIRO
  4. Pew Fellows Program
  5. Fisheries Research and Development Corporation [2004/063]
  6. Australian Research Council [DP0879365] Funding Source: Australian Research Council

向作者/读者索取更多资源

Climate change is altering the rate and distribution of primary production in the world's oceans. Primary production is critical to maintaining biodiversity and supporting fishery catches, but predicting the response of populations to primary production change is complicated by predation and competition interactions. We simulated the effects of change in primary production on diverse marine ecosystems across a wide latitudinal range in Australia using the marine food web model Ecosim. We link models of primary production of lower trophic levels (phytoplankton and benthic producers) under climate change with Ecosim to predict changes in fishery catch, fishery value, biomass of animals of conservation interest, and indicators of community composition. Under a plausible climate change scenario, primary production will increase around Australia and generally this benefits fisheries catch and value and leads to increased biomass of threatened marine animals such as turtles and sharks. However, community composition is not strongly affected. Sensitivity analyses indicate overall positive linear responses of functional groups to primary production change. Responses are robust to the ecosystem type and the complexity of the model used. However, model formulations with more complex predation and competition interactions can reverse the expected responses for some species, resulting in catch declines for some fished species and localized declines of turtle and marine mammal populations under primary productivity increases. We conclude that climate-driven primary production change needs to be considered by marine ecosystem managers and more specifically, that production increases can simultaneously benefit fisheries and conservation. Greater focus on incorporating predation and competition interactions into models will significantly improve the ability to identify species and industries most at risk from climate change.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据