4.8 Article

Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics

期刊

GLOBAL CHANGE BIOLOGY
卷 15, 期 3, 页码 719-731

出版社

WILEY
DOI: 10.1111/j.1365-2486.2008.01734.x

关键词

ageing; bioclimate envelope; Centrostephanus rodgersii; climate change; East Australian Current; growth; larval dispersal; sea surface temperature; spatial distribution; thermal tolerance

资金

  1. UTas
  2. Tasmanian Aquaculture and Fisheries Institute
  3. FRDC [2001/044]
  4. UTas-CSIRO

向作者/读者索取更多资源

Patterns of climate-forced range shift in the marine environment are informed by investigating the population dynamics of an ecologically important sea urchin (Centrostephanus rodgersii-Diadematidae) across its newly extended range in Tasmania (southeastern Australia). A growth model of C. rodgersii is developed allowing estimation of a sea urchin age profile and, in combination with abundance data, we correlate the sea urchin population dynamic with respect to environmental signals across the range extension region. Growth patterns did not vary across the extension region; however, there was a strong pattern of decreasing sea urchin age with increasing distance from the historic range. The sequential poleward discovery of the sea urchin, a pattern of declining age and a general poleward reduction in abundance along the eastern Tasmanian coastline are consistent with a model of range extension driven by recent change in patterns of larval dispersal. We explore this hypothesis by correlating C. rodgersii population characteristics with respect to the East Australian Current (EAC), i.e. the chief vector for poleward larval dispersal, and reveal patterns of declining sea urchin age and abundance with increasing distance from this oceanic feature. Furthermore, C. rodgersii is generally limited to sites where average winter temperatures are warmer than the cold threshold for its larval development. Potential dispersal and physiological mechanisms defining the range extension appear to be strongly coupled to the EAC which has undergone recent poleward advance and resulted in coastal warming in eastern Tasmania. Predicted climate change conditions for this region will favour continued population expansion of C. rodgersii not only via atmospheric-forced ocean warming, but also via ongoing intensification of the EAC driving continued poleward supply of larvae and heat.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据