4.8 Article

New coupled model used inversely for reconstructing past terrestrial carbon storage from pollen data: validation of model using modern data

期刊

GLOBAL CHANGE BIOLOGY
卷 15, 期 1, 页码 82-96

出版社

WILEY
DOI: 10.1111/j.1365-2486.2008.01712.x

关键词

BIOME6000; biome model; inverse model; pollen biome scores; terrestrial carbon storage

资金

  1. National Basic Research Program of China [2004CB720203]
  2. National Natural Science Foundation of China [40730104, 40599422]
  3. NSFC for Innovation Group project [40121303]
  4. French Ministry of Research to Haibin Wu
  5. Furong Scholar Program
  6. Natural Sciences and Engineering Research Council of Canada
  7. French National Agency for Research (ANR)
  8. French CNRS
  9. European Science Foundation

向作者/读者索取更多资源

The knowledge of potential impacts of climate change on terrestrial vegetation is crucial to understand long-term global carbon cycle development. Discrepancy in data has long existed between past carbon storage reconstructions since the Last Glacial Maximum by way of pollen, carbon isotopes, and general circulation model (GCM) analysis. This may be due to the fact that these methods do not synthetically take into account significant differences in climate distribution between modern and past conditions, as well as the effects of atmospheric CO2 concentrations on vegetation. In this study, a new method to estimate past biospheric carbon stocks is reported, utilizing a new integrated ecosystem model (PCM) built on a physiological process vegetation model (BIOME4) coupled with a process-based biospheric carbon model (DEMETER). The PCM was constrained to fit pollen data to obtain realistic estimates. It was estimated that the probability distribution of climatic parameters, as simulated by BIOME4 in an inverse process, was compatible with pollen data while DEMETER successfully simulated carbon storage values with corresponding outputs of BIOME4. The carbon model was validated with present-day observations of vegetation biomes and soil carbon, and the inversion scheme was tested against 1491 surface pollen spectra sample sites procured in Africa and Eurasia. Results show that this method can successfully simulate biomes and related climates at most selected pollen sites, providing a coefficient of determination (R) of 0.83-0.97 between the observed and reconstructed climates, while also showing a consensus with an R-value of 0.90-0.96 between the simulated biome average terrestrial carbon variables and the available observations. The results demonstrate the reliability and feasibility of the climate reconstruction method and its potential efficiency in reconstructing past terrestrial carbon storage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据