4.8 Article

Warming prevents the elevated CO2-induced reduction in available soil nitrogen in a temperate, perennial grassland

期刊

GLOBAL CHANGE BIOLOGY
卷 14, 期 5, 页码 1018-1024

出版社

WILEY
DOI: 10.1111/j.1365-2486.2008.01558.x

关键词

biogeochemistry; elevated CO2; FACE; progressive nitrogen limitation; warming

向作者/读者索取更多资源

Rising atmospheric carbon dioxide concentration ([CO2]) has the potential to stimulate ecosystem productivity and sink strength, reducing the effects of carbon (C) emissions on climate. In terrestrial ecosystems, increasing [CO2] can reduce soil nitrogen (N) availability to plants, preventing the stimulation of ecosystem C assimilation; a process known as progressive N limitation. Using ion exchange membranes to assess the availability of dissolved organic N, ammonium and nitrate, we found that CO2 enrichment in an Australian, temperate, perennial grassland did not increase plant productivity, but did reduce soil N availability, mostly by reducing nitrate availability. Importantly, the addition of 2 degrees C warming prevented this effect while warming without CO2 enrichment did not significantly affect N availability. These findings indicate that warming could play an important role in the impact of [CO2] on ecosystem N cycling, potentially overturning CO2-induced effects in some ecosystems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据