4.8 Article

Winter soil frost conditions in boreal forests control growing season soil CO2 concentration and its atmospheric exchange

期刊

GLOBAL CHANGE BIOLOGY
卷 14, 期 12, 页码 2839-2847

出版社

WILEY
DOI: 10.1111/j.1365-2486.2008.01669.x

关键词

boreal forest soil; carbon dioxide; frozen soils; soil frost; soil respiration

资金

  1. FORMAS [21.4/2003-0634]
  2. Swedish Research Council
  3. Oscar and Lili Lamm foundation

向作者/读者索取更多资源

The impact of changes in winter soil frost regime on soil CO2 concentration and its atmospheric exchange in a boreal Norway spruce forest was investigated using a field-scale soil frost manipulation experiment. The experiment comprised three treatments: deep soil frost, shallow soil frost and control plots (n = 3). Winter soil temperatures and soil frost distribution were significantly altered by the different treatments. The average soil CO2 concentrations during the growing season were significantly lower in plots with deep soil frost than in plots with shallow soil frost. The average CO2 soil-atmosphere exchange rate exhibited the same pattern, and differences in soil respiration rates among the treatments were statistically significant. Both the variation in soil CO2 concentration and the CO2 soil-atmosphere exchange rate could statistically be explained by the differences in the maximum soil frost depth during the previous winter. A response model for growing season soil respiration rates suggests that every 1 cm change in winter soil frost depth will change the emission rates by ca. 0.01 g CO2 m(-2) day(-1), corresponding to 0.2-0.5% of the estimated net ecosystem productivity (NEP). This suggests that the soil frost regime has a significant influence on the C balance of the system, because interannual variations in soil frost up to 60 cm have been recorded at the site. We conclude that winter climate conditions can be important in controlling C balances in northern terrestrial ecosystems, and also that indirect effects of the winter season must be taken into account, because these can affect the prevailing conditions during the growing season.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据