4.7 Article

Future Arctic Ocean primary productivity from CMIP5 simulations: Uncertain outcome, but consistent mechanisms

期刊

GLOBAL BIOGEOCHEMICAL CYCLES
卷 27, 期 3, 页码 605-619

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/gbc.20055

关键词

Arctic; primary production; nitrate; sea ice

资金

  1. [BISICLO FP7 CIG 321938]
  2. NERC [noc010010] Funding Source: UKRI
  3. Natural Environment Research Council [noc010010] Funding Source: researchfish

向作者/读者索取更多资源

Net Arctic Ocean primary production (PP) is expected to increase over this century, due to less perennial sea ice and more available light, but could decrease depending on changes in nitrate (NO3) supply. Here Coupled Model Intercomparison Project Phase 5 simulations performed with 11 Earth System Models are analyzed in terms of PP, surface NO3, and sea ice coverage over 1900-2100. Whereas the mean model simulates reasonably well Arctic-integrated PP (511TgC/yr, 1998-2005) and projects a mild 58TgC/yr increase by 2080-2099 for the strongest climate change scenario, models do not agree on the sign of future PP change. However, similar mechanisms operate in all models. The perennial ice loss-driven increase in PP is in most models NO3-limited. The Arctic surface NO3 is decreasing over the 21st century (-2.31mmol/m(3)), associated with shoaling mixed layer and with decreasing NO3 in the nearby North Atlantic and Pacific waters. However, the intermodel spread in the degree of NO3 limitation is initially high, resulting from >1000year spin-up simulations. This initial NO3 spread, combined with the trend, causes a large variation in the timing of oligotrophy onsetwhich directly controls the sign of future PP change. Virtually all models agree in the open ocean zones on more spatially integrated PP and less PP per unit area. The source of model uncertainty is located in the sea ice zone, where a subtle balance between light and nutrient limitations determines the PP change. Hence, it is argued that reducing uncertainty on present Arctic NO3 in the sea ice zone would render Arctic PP projections much more consistent.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据