4.7 Article

Strong spatial variability in trace gasdynamics following experimental drought in a humid tropical forest

期刊

GLOBAL BIOGEOCHEMICAL CYCLES
卷 26, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2010GB004014

关键词

-

资金

  1. NOAA Climate and Global Change Postdoctoral Fellowship
  2. NSF [DEB-0620910]
  3. USDA Forest Service International Institute of Tropical Forestry (IITF) as part of the Luquillo LTER program
  4. USDA-IITF
  5. California Agricultural Experiment Station [7673-MS]
  6. [DEB-0543558]

向作者/读者索取更多资源

Soil moisture is a key driver of biogeochemical processes in terrestrial ecosystems, strongly affecting carbon (C) and nutrient availability as well as trace gas production and consumption in soils. Models predict increasing drought frequency in tropical forest ecosystems, which could feed back on future climate change directly via effects on trace gasdynamics and indirectly through changes in nutrient availability. We used throughfall exclusion shelters to determine effects of short-term (3 month) drought on trace gas fluxes and nutrient availability in humid tropical forests in Puerto Rico. Exclusion and control plots were replicated within and across three topographic zones (ridge, slope, valley) to account for spatial heterogeneity typical of these ecosystems. Throughfall exclusion reduced soil moisture in all sites and lowered exchangeable phosphorus (P) on ridges and slopes. Drought decreased soil carbon dioxide (CO2) emissions by 30% in ridge sites and 28% in slope sites, and increased net methane (CH4) consumption by 480% in valley sites. Both valley and ridge sites became net nitrous oxide (N2O) sinks in response to soil drying. Emissions of CO2 and N2O, as well as CH4 consumption were positively related to exchangeable P and the nitrate: ammonium ratio. These findings suggest that drought has the potential to decrease net trace gas emissions from humid tropical forest soils. The differential response of trace gas emissions and nutrients from different topographic zones to drought underscores the complexity of biogeochemical cycling in these ecosystems and the importance of considering spatial heterogeneity when estimating whole system responses.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据