4.7 Article

Western Pacific coastal sources of iron, manganese, and aluminum to the Equatorial Undercurrent

期刊

GLOBAL BIOGEOCHEMICAL CYCLES
卷 24, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2009GB003693

关键词

-

资金

  1. National Science Foundation [NSF-OCE-0425721]
  2. JISAO under National Oceanic and Atmospheric Administration (NOAA) [NA17RJ1232]
  3. NERC [bas0100028] Funding Source: UKRI
  4. Natural Environment Research Council [bas0100028] Funding Source: researchfish

向作者/读者索取更多资源

We present results from the first zonal transect of iron, aluminum, and manganese conducted from the western source region of the Equatorial Undercurrent (EUC) to the central equatorial Pacific. Trace metals were elevated along the slope of Papua New Guinea and within the New Guinea Coastal Undercurrent (NGCU), which is the primary Southern Hemisphere entry path of water to the EUC. Subsurface maxima in total acid-soluble iron, aluminum, and manganese were evident in the EUC. These maxima were generally greatest in the western equatorial Pacific and decreased in magnitude eastward. Maxima in iron and aluminum persisted to 140 degrees W; maxima in manganese extended to 175 degrees W. Iron and manganese maxima were deeper (25-75 m) than aluminum maxima and located in the lower EUC, which undergoes less interior ocean mixing than shallower waters. The depth of the aluminum subsurface maxima correlated strongly (r = 0.88) with the depth of the EUC velocity maximum. Surface waters were enriched in aluminum and manganese offshore of Papua New Guinea. Surface metal concentrations decreased eastward throughout the western warm pool up to the longitude (similar to 180 degrees W) of the salinity front. Detrital sediment input from either direct riverine input or sediment resuspension appeared to be the primary mechanism of supplying metals to the NGCU. We estimated eastward fluxes of metals in the EUC and found greatest fluxes in the western equatorial Pacific between 160 E and 165 degrees E, except for aluminum. Fluxes of aluminum and, to a lesser extent, manganese increased concurrently with water volume transport in the central equatorial Pacific. Iron transport in the EUC remained constant east of the dateline, apparently due to the combined effects of dilution by meridional entrainment and scavenging. Iron was mobilized in a highly active western boundary current region and transported eastward in the lower EUC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据