4.6 Article

Modelling future no-analogue climate distributions: A world-wide phytoclimatic niche-based survey

期刊

GLOBAL AND PLANETARY CHANGE
卷 101, 期 -, 页码 1-11

出版社

ELSEVIER
DOI: 10.1016/j.gloplacha.2012.12.001

关键词

Climate change; Phytoclimatic model; Convex hull; Novel environments; Biodiversity hotspots

向作者/读者索取更多资源

By the end of the 21st century in some zones the accelerating climate change affecting this planet will create factorial combinations unknown at this time, which will give rise to climates unlike the present ones. This study presents a numerical and cartographic evaluation of these no-analogue climatic zones, whose consequences for existing ecosystems are quite unpredictable, using a method based on the convex hull in a climate hyperspace and 12 future climate projections for 2080. The percentage of the world surface that will foreseeably be occupied by no-analogue climates by 2080 ranges between 3.5% and 17.5%. The bulk of the no-analogue surface area will foreseeably be located in the Northern hemisphere (>80%), with more elevated risk in tropical and subtropical latitudes between 10 degrees latitude South and 30 degrees latitude North, preferentially in Africa, South America, the Arabian Peninsula, the Indian Peninsula, the North-West of the Gulf of Mexico, Eastern China and Polynesia. Mean temperatures would appear to be the variables most influencing the process. This affects 32 of the 34 hotspots defined for the planet, especially tropical forests in South America and Asia. 6.8% of these conservation-critical surfaces are predicted as no-analogue areas. Population density is greater in the areas that will probably develop no-analogue climates in the future than in those that will not. (C) 2012 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据