4.7 Article

Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH)

期刊

GEOTECHNIQUE
卷 61, 期 7, 页码 565-574

出版社

ICE PUBLISHING
DOI: 10.1680/geot.9.P.046

关键词

failure; limit equilibrium methods; numerical modelling; plasticity; pore pressure; slopes

资金

  1. Grants-in-Aid for Scientific Research [23404012] Funding Source: KAKEN

向作者/读者索取更多资源

Most slope stability analyses have employed limit equilibrium methods (LEMs) or the finite-element method (FEM) as the standard approach. However, slope instability is often accompanied by discontinuous failure of the soil, which cannot be modelled by either LEMs or FEM. To overcome this limitation, this paper presents an extension of the smoothed particle hydrodynamics (SPH) method to evaluate the stability of a slope, and to simulate the post-failure behaviour of soil. For the slope stability analysis, the shear strength reduction technique with a modified failure criterion for distinguishing convergent from non-convergent solutions is applied to estimate the safety factor of a slope, and the critical slip surface is determined from a contour plot of accumulated plastic strain. To take the pore water pressure into account, a new SPH formulation for soil motion is developed. It is suggested that this equation can be applied to further developments of SPH for saturated soil. As an application of the proposed method, several smoothed particle slope stability analyses and corresponding slope failure simulations are presented, and compared with other solutions. The results show good agreements with other methods in terms of the safety factor and the critical slip surface. As compared with such traditional methods, however, an advantage of SPH is that it can simulate large deformation and post-failure of soil, and can thereby treat a wide range of applications in computational geomechanics, especially those that include large deformation and failure of geomaterials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据