4.7 Article

Micro- and macro-mechanical behaviour of DEM crushable materials

期刊

GEOTECHNIQUE
卷 58, 期 6, 页码 471-480

出版社

ICE PUBLISHING
DOI: 10.1680/geot.2008.58.6.471

关键词

constitutive relations; fabric/structure of soils; friction; numerical modelling; particle crushing/crushability; plasticity

向作者/读者索取更多资源

This paper provides a micro-mechanical commentary on the macroscopic behaviour observed in DEM simulations of the compression of individual crushable grains, and of triaxial tests on assemblies of both crushable and uncrushable grains. A fragmentation ratio is defined to describe the bond breakage processes, and the significance of other micro-mechanical parameters such as sliding contacts ratio, average coordination number, deviator fabric, and internal energies per unit volume is discussed. Three different modes of grain damage were observed: asperity breakage, internal shear cracking, and internal tensile cracking leading to fast fracture. Energy balances both for the compression of a single grain, and for triaxial tests on assemblies of grains, showed that the loss of elastic energy due to bond breakage was a negligible fraction of the significantly enhanced dissipation encountered with crushable materials. This extra dissipation was associated with frictional sliding triggered by the creation of new degrees of freedom among the breaking fragments. Different modes of grain breakage were found to be representative of different regions of soil states of stress defined with respect to the virgin compression line. The secondary role of elastic grain deformability, increasing coordination number but reducing dilatancy, has also been demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据