4.3 Article

Controls on submarine channel-modifying processes identified through morphometric scaling relationships

期刊

GEOSPHERE
卷 14, 期 5, 页码 2171-2187

出版社

GEOLOGICAL SOC AMER, INC
DOI: 10.1130/GES01674.1

关键词

-

资金

  1. Chevron Center of Research Excellence (CoRE) at the Colorado School of Mines, Golden, Colorado, USA
  2. Colorado School of Mines
  3. BMBF [03G0125A, 03G0188A]

向作者/读者索取更多资源

Submarine channels share morphological similarities with rivers, but observations from modern and ancient systems indicate they are formed under processes and controls unique to submarine settings. Morphologic characteristics of channels-e.g., width, depth, slope, and the relationships among them-can constrain interpretations of channel-forming processes. This work uses morphometric scaling relationships extracted from high-resolution sea floor bathymetry to infer connections between morphology and process in submarine channels. Analysis of 36 modern channels in five geographic regions shows that channel widths vary regionally (from <100 m to >10 km wide) but occupy the same range of aspect ratios (similar to 10:1-100:1). This suggests an autogenic control on aspect ratio, perhaps resulting from feedback processes in levee growth and/or bank erosion, and allogenic (e.g., sediment supply, grain size) controls on channel width. Submarine channel aspect ratios tend to decrease with increasing dimensions, while the opposite relationship has been observed for fluvial channels, likely due to opposing relationships between flow discharge and channel distance. Additionally, observation of an apparent lag between channel thalweg and levee responses to gradient changes suggests that thalweg and levee deposition and erosion may be partially decoupled due to the vertical structure of turbidity currents, with thalweg evolution driven by the basal, higher-shear-stress portion of the flow and levee evolution by the dilute upper portion. The data presented here provide a basis for predicting channel metrics in exploration scenarios, in which data coverage may be sparse. This documentation of a diverse suite of channels also captures the range of scales and variability exhibited globally by submarine channel systems, providing context for local studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据