4.6 Article

Seismic properties of the Voisey's Bay massive sulfide deposit: Insights into approaches to seismic imaging

期刊

GEOPHYSICS
卷 77, 期 5, 页码 WC59-WC68

出版社

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/GEO2011-0483.1

关键词

-

资金

  1. Vale mining company
  2. Atlantic Innovation Fund (AIF)
  3. National Science and Engineering Research Council (NSERC)

向作者/读者索取更多资源

Seismic methods offer significant potential advantages for minerals exploration over more traditional geophysical techniques because of the comparatively high resolution of seismic imaging. This is particularly true as minerals exploration is required to explore deeper to find resources. However, adaptation of seismic imaging techniques to the complex crystalline targets common in the mining environment requires a thorough understanding of the physical properties of the specific combination of ore and host rocks under consideration to choose an appropriate imaging technique. Analysis of the sulfide ores and associated host rocks from the Voisey's Bay nickel-copper-cobalt deposit indicates that in the pyrrohotite-pentlandite-rich but pyrite-poor assemblage at Voisey's Bay, seismic velocities are significantly lower (mean similar to 4500 m/s) than either the felsic or mafic host rocks (mean similar to 5900 m/s and similar to 6400 m/s). This observation is in contrast with pyrite-rich massive sulfide ores that have velocities that are significantly higher than typical host rocks. The large velocity contrast between the Voisey's Bay ores and their host rocks makes them good targets for tomographic imaging. However, due to the trade-off between the low velocities and high densities of the Voisey's Bay sulfides, acoustic impedance contrasts can be quite modest making them less attractive for seismic reflection imaging. Detailed analysis of two different mineralized zones at Voisey's Bay further demonstrated that, depending on the limiting signal-to-noise ratio, the choice of an effective seismic imaging technique is not universal across a mineral deposit and may be affected by subtle variations in sulfide mineralogy and by the structural/magmatic setting. Our analysis clearly indicated that knowledge of physical properties and geologic setting is critical to the choice of which seismic technique to apply in a given exploration setting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据