4.6 Article

Three-dimensional frequency-domain full-waveform inversion with an iterative solver

期刊

GEOPHYSICS
卷 74, 期 6, 页码 WCC149-WCC157

出版社

SOC EXPLORATION GEOPHYSICISTS
DOI: 10.1190/1.3211198

关键词

-

向作者/读者索取更多资源

With the acquisition of wide-aperture seismic data sets, full-waveform inversion is an attractive method for deriving velocity models. Three-dimensional implementations require an efficient solver for the wave equation. Computing 3D time-harmonic responses with a frequency-domain solver is complicated because a large linear system with negative and positive eigenvalues must be solved. Time-domain schemes are an alternative. Nevertheless, existing frequency-domain iterative solvers with an efficient preconditioner are a viable option when full-waveform inversion is formulated in the frequency domain. An iterative solver with a multigrid preconditioner is competitive because of a high-order spatial discretization. Numerical examples illustrated the efficiency of the iterative solvers. Three dimensional full-waveform inversion was then studied in the context of deep-water ocean-bottom seismometer acquisition. Three dimensional synthetic data inversion results showed the behavior of full-waveform inversion with respect to the initial model and the minimum frequency available in the data set. Results on a 3D real ocean-bottom seismometer data set demonstrated the relevance of full-waveform inversion, especially to image the shallow part of the model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据