4.7 Article

Seasonal variation in total water storage in California inferred from GPS observations of vertical land motion

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 41, 期 6, 页码 1971-1980

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/2014GL059570

关键词

California; GPS; hydrology; water; snow

向作者/读者索取更多资源

GPS is accurately recording vertical motion of Earth's surface in elastic response to seasonal changes in surface water storage in California. California's mountains subside up to 12 mm in the fall and winter due to the load of snow and rain and then rise an identical amount in the spring and summer when the snow melts, the rain runs off, and soil moisture evaporates. We invert the GPS observations of seasonal vertical motions to infer changes in equivalent water thickness. GPS resolves the distribution of change in total water across California's physiographic provinces at a resolution of 50 km, compared to 200 km resolution from the Gravity Recovery and Climate Experiment. The seasonal surface water thickness change is 0.6 m in the Sierra Nevada, Klamath, and southern Cascade Mountains and decreases sharply to about 0.1 m east into the Great Basin and west toward the Pacific coast. GPS provides an independent inference of change in total surface water, indicating water storage to be on average 50% larger than in the NLDAS-Noah hydrology model, likely due to larger changes in snow and reservoir water than in the model. Seismicity and land uplift produced by groundwater loss in California's Central Valley is also being evaluated [Amos et al., 2014].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据