4.7 Article

Scaling of fluid flow versus fracture stiffness

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 40, 期 10, 页码 2076-2080

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1002/grl.50479

关键词

fractured rocks; hydromechanical coupling; hydromechanical scaling; flow-stiffness scaling

资金

  1. Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy [DEFG02-97ER14785 08, DE-FG02-09ER16022]
  2. Geo Mathematical Imaging Group at Purdue University
  3. Purdue Research Foundation
  4. Computer Research Institute At Purdue University

向作者/读者索取更多资源

Seismic characterization of fluid flow through fractures requires a fundamental understanding of the relationship between the hydraulic and mechanical properties of fractures. A finite-size scaling analysis was performed on fractures with weakly correlated random aperture distributions to determine the fundamental scaling relationship between fracture stiffness and fracture fluid flow. From computer simulations, the dynamic transport exponent, which provides the power law dependence, was extracted and used to collapse the flow-stiffness relationships from multiple scales into a single scaling function. Fracture specific stiffness was determined to be a surrogate for void area that is traditionally used in percolation studies. The flow-stiffness scaling function displays two exponentially dependent regions above and below the transition into the critical regime. The transition is governed by the stressed flow paths when the flow path geometry deforms from a sheet-like topology to a string-like topology. The resulting hydromechanical scaling function provides a link between fluid flow and the seismic response of a fracture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据