4.7 Article

Limits of Enceladus's ice shell thickness from tidally driven tiger stripe shear failure

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 38, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2010GL044950

关键词

-

资金

  1. NASA [NNG06GF44G]

向作者/读者索取更多资源

Enceladus's south polar thermal anomaly and water-rich plumes suggest the existence of a subsurface ocean, which is overlain by an ice shell of uncertain thickness. Our objective is to constrain Enceladus's ice shell thickness, through assessment of tidally driven Coulomb failure of Enceladus's tiger stripe faults. We find that thin to moderate ice shell thicknesses (<40 km) support shear failure along the tiger stripes, assuming low ice coefficients of friction (0.1-0.3) and shallow fault depths (<3 km). These results are marginally consistent with the minimum ice shell thickness which can permit convection within Enceladus's ice shell. A plausible scenario is one in which the heat loss and tectonic style of Enceladus has changed through time, with convection initiating in a thick ice shell, and tiger stripe activity commencing as the ice shell thinned. Citation: Olgin, J. G., B. R. Smith-Konter, and R. T. Pappalardo (2011), Limits of Enceladus's ice shell thickness from tidally driven tiger stripe shear failure, Geophys. Res. Lett., 38, L02201, doi: 10.1029/2010GL044950.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据