4.7 Article

Mega-ejecta on asteroid Vesta

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 38, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2010GL045517

关键词

-

资金

  1. NASA PGG
  2. NSF

向作者/读者索取更多资源

Asteroid 4 Vesta, sometimes called the smallest terrestrial planet, will be orbited next July by NASA's Dawn mission. This will be the first time a small planet is visited by a spacecraft, and novel geological structures are expected. A key issue regarding Vesta (mean diameter 530 km) is to what extent its geology is dominated by the similar to 460 km diameter impact basin on its southern hemisphere. We model the basin's formation using a very high resolution 3D smooth-particle hydrodynamics simulation to establish some of the major impact-related aspects of Vesta's geology. The goal is to provide a framework for interpreting anticipated observations of landforms. A collision of this magnitude (a similar to 50 km diameter impactor at similar to 5 km/s) exposes many deep strata from within the planet and offsets the center of mass by similar to 10 km from the center of figure. Vesta spins every 5.3 hr, so that a hemispheric-scale impact evolves in a non-inertial frame, and deposits variably-shaped, multiply-folded and abruptly-terminated ejecta sequences of regional scale. Since little of this ejecta would have been molten, these massive sequenced deposits could be mistaken in images of Vesta for other geologic forms such as thrusts and folds. Detailed mapping, and the piecing-together of mega-ejecta via impact models, will enable an informed understanding of the interior geology of Vesta. Citation: Jutzi, M., and E. Asphaug (2011), Mega-ejecta on asteroid Vesta, Geophys. Res. Lett., 38, L01102, doi: 10.1029/2010GL045517.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据