4.7 Article

The impact of climate, CO2, nitrogen deposition and land use change on simulated contemporary global river flow

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 38, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011GL046773

关键词

-

资金

  1. U.S. Department of Energy, Office of Science, Biological and Environmental Research

向作者/读者索取更多资源

We investigated how climate, rising atmospheric CO2 concentration, increasing anthropogenic nitrogen deposition and land use change influenced continental river flow over the period 1948-2004 using the Community Land Model version 4 (CLM4) with coupled river transfer model (RTM), a global river routing scheme. The model results indicate that the global mean river flow shows significant decreasing trend and climate forcing likely functions as the dominant controller of the downward trend during the study period. Nitrogen deposition and land use change account for about 5% and 2.5% of the decrease in simulated global scale river flow, respectively, while atmospheric CO2 accounts for an upward trend. However, the relative role of each driving factor is heterogeneous across regions in our simulations. The trend in river flow for the Amazon River basin is primarily explained by CO2, while land use change accounts for 27.4% of the downward trend in river flow for the Yangtze rive basin. Our simulations suggest that to better understand the trends of river flow, it is not only necessary to take into account the climate, but also to consider atmospheric composition, carbon-nitrogen interaction and land use change, particularly for regional scales. Citation: Shi, X., J. Mao, P. E. Thornton, F. M. Hoffman, and W. M. Post (2011), The impact of climate, CO2, nitrogen deposition and land use change on simulated contemporary global river flow, Geophys. Res. Lett., 38, L08704, doi: 10.1029/2011GL046773.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据