4.7 Article

Thermodynamic and hydrodynamic constraints on overpressure caused by hydrate dissociation: A pore-scale model

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 38, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2011GL047937

关键词

-

资金

  1. Eni S.p.A.
  2. ARCO

向作者/读者索取更多资源

It has been suggested that volume expansion caused by hydrate dissociation in sediment pores can result in large overpressure, which in turn may destabilize the sediment and trigger massive submarine landslides. Here, we investigate the pressure evolution during thermally-induced dissociation, by means of a pore-scale model that couples dissociation kinetics, multiphase flow and geomechanics. Dissociation is controlled by a self-preservation mechanism: increasing pore pressure reduces the driving force for dissociation. Hence, the overpressure is constrained by the phase equilibrium pressure, regardless of the kinetic rate of dissociation, heat supply, and sediment permeability. Furthermore, we find that the timescale for buildup of pressure by dissociation is typically much larger than that for its dissipation by drainage. Consequently, the overpressure is controlled by the capillary entry thresholds, which depend on the mode of gas invasion. In low-permeability systems, fracturing is the preferred mechanism, occurring at capillary pressures lower than the entry thresholds in the undeformed sediment. Our results suggest that while large overpressures cannot be sustained by rapid dissociation in natural systems, dissociation can induce important geomechanical effects. Gas migration by fracturing provides a possible link between dissociation, sediment deformation and methane venting. Citation: Holtzman, R., and R. Juanes (2011), Thermodynamic and hydrodynamic constraints on overpressure caused by hydrate dissociation: A pore-scale model, Geophys. Res. Lett., 38, L14308, doi:10.1029/2011GL047937.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据