4.7 Article

Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements

期刊

GEOPHYSICAL RESEARCH LETTERS
卷 37, 期 -, 页码 -

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2010GL044696

关键词

-

资金

  1. NSF [EAR071160]
  2. NASA [NNX08AH18G]
  3. National Aeronautics and Space Administration
  4. NASA [101591, NNX08AH18G] Funding Source: Federal RePORTER
  5. Directorate For Geosciences
  6. Division Of Earth Sciences [1032295] Funding Source: National Science Foundation

向作者/读者索取更多资源

Narrow bands of strong atmospheric water vapor transport, referred to as atmospheric rivers (ARs), are responsible for the majority of wintertime extreme precipitation events with important contributions to the seasonal water balance. We investigate relationships between snow water equivalent (SWE), precipitation, and surface air temperature (SAT) across the Sierra Nevada for 45 wintertime AR events. Analysis of assimilated and in situ data for water years 2004-2010 indicates that ARs on average generate similar to 4 times daily SWE accumulation of non-AR storms. In addition, AR events contributed similar to 30-40% of total seasonal SWE accumulation in most years, with the contribution dominated by just 1-2 extreme events in some cases. In situ and remotely sensed observations show that SWE changes associated with ARs are closely related to SAT. These results reveal the previously unexplored significance of ARs with regard to the snowpack and associated sensitivities of AR precipitation to SAT. Citation: Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman (2010), Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements, Geophys. Res. Lett., 37, L20401, doi:10.1029/2010GL044696.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据