4.6 Article

Source-independent full wavefield converted-phase elastic migration velocity analysis

期刊

GEOPHYSICAL JOURNAL INTERNATIONAL
卷 200, 期 2, 页码 952-966

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gji/ggu450

关键词

Inverse theory; Body waves; Seismic tomography; Computational seismology; Wave propagation

资金

  1. ConocoPhillips
  2. ERL founding members consortium at MIT

向作者/读者索取更多资源

Converted phase (CP) elastic seismic signals are comparable in amplitude to the primary signals recorded at large offsets and have the potential to be used in seismic imaging and velocity analysis. We present an approach for CP elastic wave equation velocity analysis that does not use source information and is applicable to surface-seismic, microseismic, teleseismic and vertical seismic profile (VSP) studies. Our approach is based on the cross-correlation between reflected or transmitted PP and CP PS (and/or SS and CP SP) waves propagated backward in time, and is formulated as an optimization problem with a differential semblance criterion objective function for the simultaneous update of both P- and S-wave velocity models. The merit of this approach is that it is fully data-driven, uses full waveform information, and requires only one elastic backward propagation to form an image rather than the two (one forward and one backward) propagations needed for standard reverse-time migration. Moreover, as the method does not require forward propagation, it does not suffer from migration operator source aliasing when a small number of shots are used. We present a derivation of the method and test it with a synthetic model and field micro-seismic data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据