4.6 Article

Effect of shear zones on post-seismic deformation with application to the 1997 Mw 7.6 Manyi earthquake

期刊

GEOPHYSICAL JOURNAL INTERNATIONAL
卷 198, 期 1, 页码 259-269

出版社

OXFORD UNIV PRESS
DOI: 10.1093/gji/ggu127

关键词

Transient deformation; Dynamics and mechanics of faulting; Mechanics, theory, and modelling; Rheology: crust and lithosphere

资金

  1. NSF [EAR-1045372]
  2. Division Of Earth Sciences
  3. Directorate For Geosciences [1045372] Funding Source: National Science Foundation

向作者/读者索取更多资源

We explore the impact of deep ductile shear zones on post-seismic deformation following a finite length strike-slip earthquake. We show that the pattern of post-seismic vertical surface deformation surrounding the fault is a discriminant for the existence of high viscosities immediately below the seismogenic layer, regardless of whether the model contains purely distributed creep or also includes a component of localized creep at subseismogenic depths. Post-seismic deformation characterized by initially fast relaxation followed by a slower relaxation is predicted by models that include both localized creep in a subseismogenic shear zone and distributed creep in the surrounding region, even if they only contain steady Maxwell viscoelasticity. This post-seismic deformation is similar to that in models that approximate the ductile lithosphere and/or asthenosphere with Burgers viscoelasticity. We find that the post-seismic deformation following the 1997 M-w 7.6 Manyi, China, earthquake, is consistent with a post-seismic model composed of a lower Maxwell viscoelastic region with viscosity 10(19) Pa s and a 5 km wide, Maxwell viscoelastic shear zone with viscosity 10(18) Pa s beneath the fault.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据