4.6 Article

A comparison among general orthogonal regression methods applied to earthquake magnitude conversions

期刊

GEOPHYSICAL JOURNAL INTERNATIONAL
卷 190, 期 2, 页码 1135-1151

出版社

WILEY-BLACKWELL
DOI: 10.1111/j.1365-246X.2012.05530.x

关键词

Earthquake source observations; Statistical seismology

资金

  1. European Union

向作者/读者索取更多资源

Until a decade ago, regression analyses for conversions between different types of magnitude were using only the ordinary least squares method, which assumes that the independent variable is error free, or the simple orthogonal regression method, which assumes equal uncertainties for the two variables. The recent literature became aware of the inadequacy of such approaches and proposes the use of general orthogonal regression methods that account for different uncertainties of the two regression variables. Under the common assumption that only the variance ratio between the dependent and independent variables is known, we compared three of such general orthogonal regression methods that have been applied to magnitude conversions: the chi-square regression, the general orthogonal regression, and the weighted total least squares. Although their formulations might appear quite different, we show that, under appropriate conditions, they all compute almost exactly the same regression coefficients and very similar (albeit slightly different) formal uncertainties. The latter are in most cases smaller than those estimated by bootstrap simulation but the amount of the deviation depends on the data set and on the assumed variance ratio.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据